

New Millennium Program's First Earth Observing Mission (EO-1)

Technology Workshop

USGS Auditorium / Reston, Virginia

... Bryant Cramer

Earth Observing-1 Implementation Manager New Millennium Program

Contents

<u>Se</u>	ction	Page No.
1	Introduction	3
2	Meeting Objectives	5
3	EO-1 Mission Overview	15
4	Technology Transfer and Infusion	29
5	Advanced Land Imager	35
6	Hyperion	75
7	Atmospheric Corrector	118
8	Science Validation Process	140
9	Spacecraft Technologies	177
	- Wideband Advanced Recorder / Processor (WARP)	178
	X-Band Phased Array Antenna	184
	- Enhanced Formation Flying	190
	- Carbon-Carbon Radiator	194
	- Pulse Plasma Thruster	198
	- Lightweight Flexible Solar Array	201
10	Next Steps	205

Section 1 Introduction

NASA

Introduction

- This is the first of several technology workshops associated with the New Millennium Program's First Earth Observing Mission (E0-1)
- The EO-1 Mission was successfully launched on November 21, 2000:
 - Now in position one minute behind Landsat-7
 - Contains three land-imaging instruments and eight spacecraft technologies applicable to a Landsat follow-on mission
 - Observatory is operating nominally and technology validation is underway
- The purpose of these workshops is to facilitate the transfer of EO-1 technologies into new applications and to efficiently infuse them into future missions
- Consequently, we are associated with the Kick-Off Workshop for the mission to succeed Landsat-7 known as the Landsat Data Continuity Mission (LDCM)
- We believe that EO-1 will flight-validate a number of new technologies that will serve to lower the cost and improve the performance of the LDCM

Section 2 Meeting Objectives

Agenda

8:30	Introduction
8:45	Meeting Objectives
9:00	NMP Perspective
9:15	Overview of the EO-1 Mission
9:45	Technology Transfer and Infusion Process
10:15	Break
10:30	Advanced Land Imager
11:30	Lunch
12:30	Hyperion
1:30	Atmospheric Corrector
2:00	Science Validation Process
3:00	Break
3:15	Overview of EO-1 Spacecraft Technologies
4:15	Next Steps and Near-Term Schedule
5:00	Adjourn

Meeting Objectives

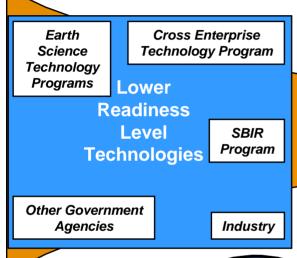
- Familiarize attendees with the EO-1 Mission and its technologies
- Explain the NMP technology validation process and the subsequent technology transfer and infusion into future missions like the LDCM
- Present background technical data on all three EO-1 instruments
- Review the science validation process associated with the instruments
- Summarize the background and status of the spacecraft technologies
- Characterize the technology infusion opportunities for each technology
- Identify those parties interested in using the EO-1 technologies
- Describe tasking opportunities potentially available later in the EO-1 mission

NASA New Millennium Program Perspective

... Christopher Stevens

California Institute of Technology, JPL

New Millennium Goals



- The New Millennium Program (NMP) was established in 1994 to revolutionize NASA's Space and Earth science programs to achieve more capable, less costly missions in the 21st Century by:
 - Developing and flight-validating revolutionary technologies
 - Reducing development times and life cycle mission costs
 - Enabling highly autonomous spacecraft
 - Promoting nationwide teaming and coordination

NASA

NMP ROLE

Flight Validation of Breakthrough Technologies to Benefit Future Earth Science Missions

Impact on 21st Century Science Missions NMP Breakthrough Nature of Technology Perceived High Risk to the First User

Breakthrough technologies

- Enable new capabilities to meet
 Earth Science needs
- Reduce costs of future missions

Flight validation

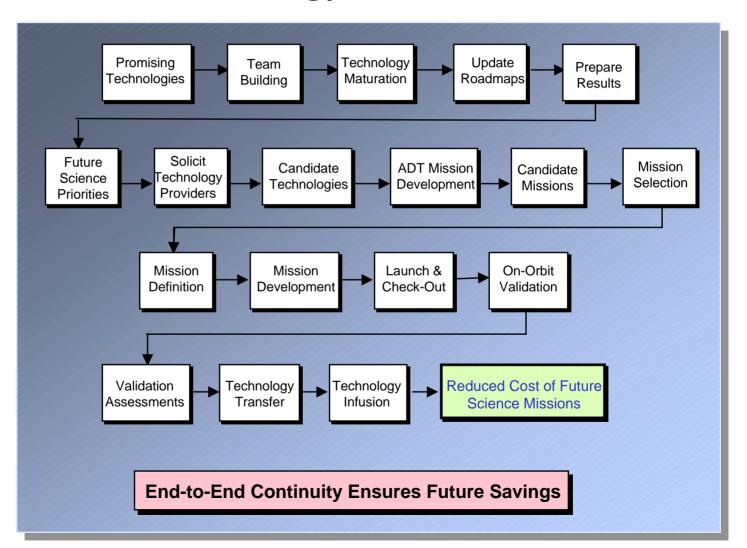
- Mitigates risks to first users
- Enables rapid technology infusion into future missions

NMP Mission Implementation

- Mission Team established in early definition
- Selection process extends through Confirmation Review
- NMP missions are NOT small science missions and cannot be treated as such -- inherently more risky
- Keys to success:
 - Resilient "Category" Architecture
 - Comprehensive, aggressive risk management
 - Adequate reserves in schedule and budget
 - Critical role of mission technologist
 - Management approach:

Technology Transfer and Infusion

- Validation Plans are executed for each assigned technology
- Each validation plan has two parts:
 - Technical
 - Science
- After flight validation, the Mission Technologist and Technology Provider prepare Technology Transfer documentation based on:
 - Basic design features and planned performance
 - Ground-based calibration and characterization
 - On-orbit technical and science validation
 - Operational experience
 - Likely applications
 - Technology Infusion opportunities
- NMP workshops, technology fairs, etc. are used to disseminate the Technology Transfer documentation
- NMP works closely with Earth and Space Science Program Offices to facilitate technology infusion into future science missions


NMP Technology Evolution

SEEDING

SELECTING

DEVELOPING

VALIDATING

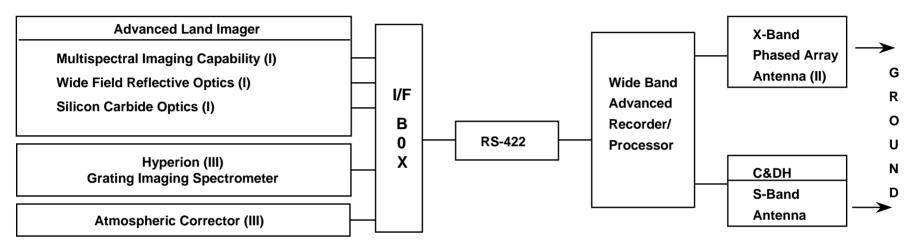
NMP Summary

- NMP provides the processes to:
 - Reduce the cost and enhance the performance of future missions
 - Leverage our investments in advanced technology
 - Encourage teaming within U.S. Aerospace industry
- NMP provides the process to explore more effective use of emerging technologies to enable future missions

Section 3

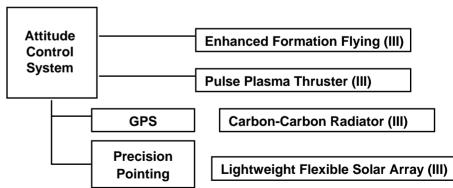
EO-1 Mission Overview

What is EO-1?



Visit our Web Site @

http://eo1.gsfc.nasa.gov/


- Designed to flight validate breakthrough technologies applicable to Landsat follow-on missions
- Specifically responsive to the Land Remote Sensing Policy Act of 1992 (Public Law 102-55) wherein NASA is charged to ensure Landsat data continuity through the use of advanced technology:
 - Multispectral Imaging Capability to address traditional Landsat user community
 - Hyperspectral Imaging Capability to address
 Landsat research-oriented community -- backward compatibility essential
 - Calibration test bed to improve absolute radiometric accuracy
 - Atmospheric correction to compensate for intervening atmosphere

EO-1 Technologies

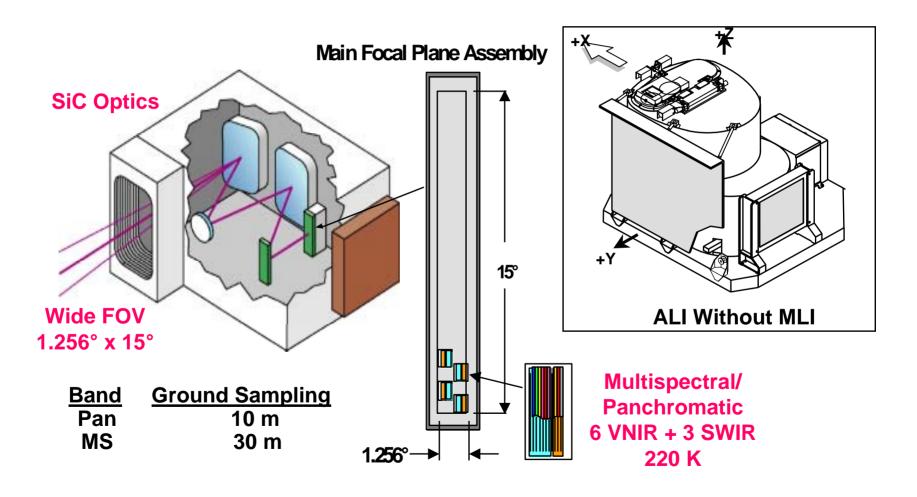
EO-1 TECHNOLOGIES

- Multispectral Imaging Capability
- Wide Field Reflective Optics
- Silicon Carbide Optics
- Grating Imaging Spectrometer (HYPERION)
- Atmospheric Corrector (AC)
- X-Band Phased Array Antenna
- Enhanced Formation Flying (EFF)
- Pulse Plasma Thruster (PPT)
- Carbon-Carbon Radiator (CCR)
- Lightweight Flexible Solar Array
- Wideband Advanced Recorder / Processor (WARP)
- Global Positioning System (GPS)
- Precision Pointing

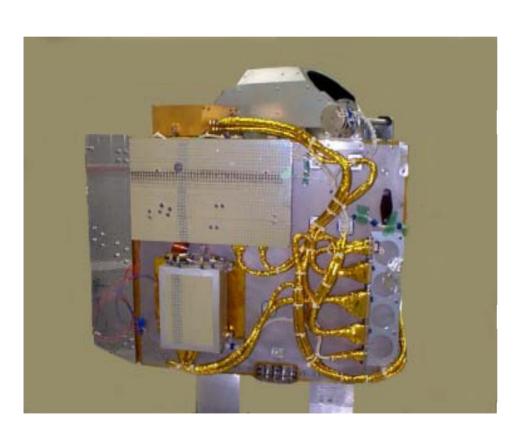
NMP Technology Categories

CATEGORY

- Essential Technology
- Willing to restructure mission in order to fly it
- If technology gets into trouble -- you fix it
- Part of minimum mission

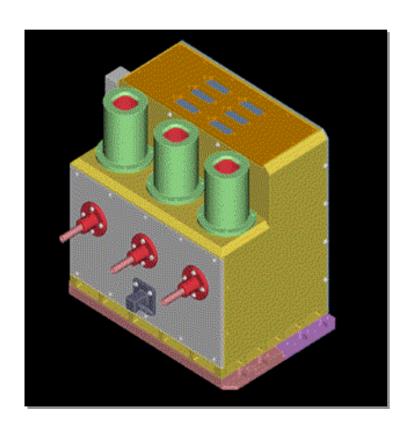

CATEGORY

- Technology provides an essential mission function
- A conventional approach is preplanned
- If technology gets into trouble -- you switch to the conventional approach


CATEGORY

- Technology exercises a flight opportunity
- If technology gets into trouble -- you defer it to a later flight

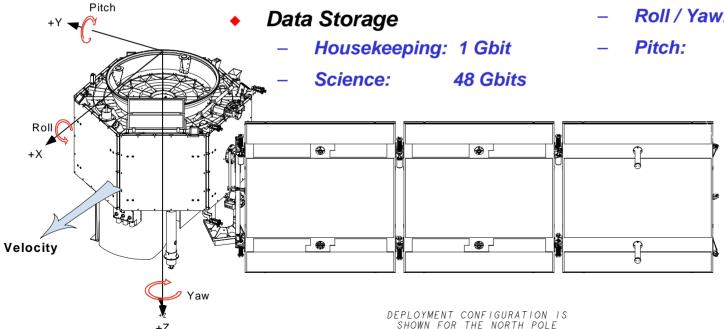
Advanced Land Imager (ALI)



Hyperion Imaging Spectrometer

- Convex Grating spectrometers with CCD VNIR and HgCdTe SWIR detectors
- 30m spatial and 10nm spectral resolutions over 7.5km swath and 400-2500nm spectral range
- Multiple calibration options: lamps, lunar, solar, ground imaging and laboratory
- Hyperspectral Imaging Capability to address Earth Observation applications

LEISA Atmospheric Corrector


- Correction of multispectral surface imagery for atmospheric variability (water and aerosols)
- High spectral, moderate spatial resolution (250m), large swath (180km) hyperspectral imager using wedge filter technology
- Spectral coverage of 0.89 1.6µm, bands selected for optimal correction of high spatial resolution images

EO-1 Spacecraft

Power

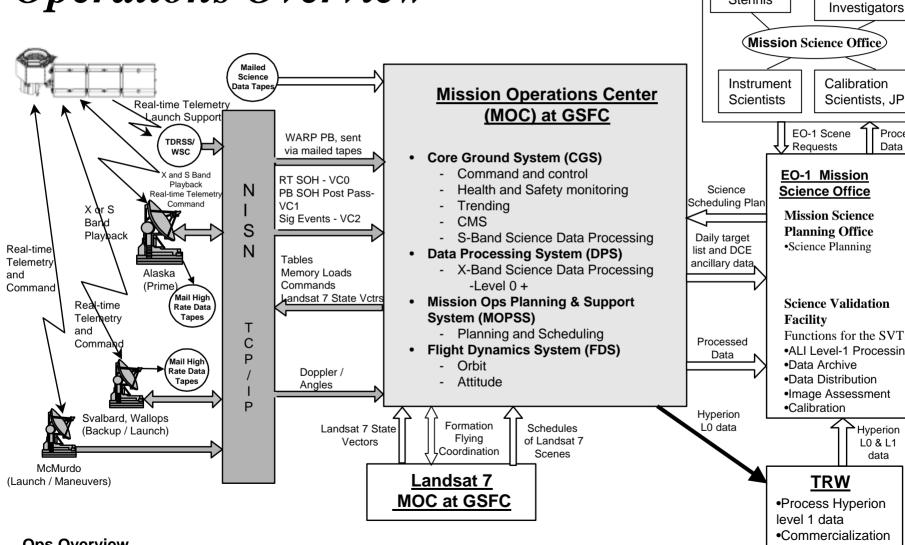
- 315 Watts
- 50 Ahr
- Super NiCd

- Articulating Si Solar Array
- Mass
 - 588 Kg
- **ALI Pointing**
 - Roll / Yaw: 0.022°
 - 0.033°

Nadir

Spacecraft Technologies

- Wideband Advanced Recorder / Processor (WARP)
- X-Band Phased Array Antenna
- Enhanced Formation Flying
- Pulse Plasma Thruster
- Carbon-Carbon Radiator
- Lightweight Flexible Solar Array
- Global Positioning System
- Precision Pointing


Stennis

Science Validation Team

NRA

Operations Overview

Mission Science Office Calibration Scientists, JPL EO-1 Scene Processed Requests Data **EO-1 Mission Science Office Mission Science Planning Office** Science Planning Science Validation **Facility** Functions for the SVT: •ALI Level-1 Processing Data Archive Data Distribution •Image Assessment Calibration Hyperion L0 & L1 data **TRW** Process Hyperion

planning

Ground System Requirements Summary

Ground stations to receive, process, and route science and HK data to GSFC

- X-Band: Receive 160 Gbits per day for the first 120 days and 80 Gbits per day at 105 Mbps thereafter
 - Record the received X-band data on hard media,
 mail to GSFC, and store raw data for 30 days
- S-Band: Receive data at selected rates up to 4
 Mbps
 - Housekeeping data: Route selected virtual channels to GSFC in real time, record up to 200 Mbits of data each day, and FTP recorded data to GSFC within one hour. Store raw data for 30 days.
 - Backup science data (up to 10 Gbits per day):
 Process as with X-band.
- Perform Level 0 processing on the science and HK telemetry
 - Fill holes, reorder science into band order

Ground System Requirements Summary (continued)

GSFC to receive and process data sent from the ground station

- Process MS/PAN science data to provide at least 200 paired scene comparisons with Landsat-7
- HYPERION Science Processing at TRW
- Maintain an orbit of sufficient precision for scene comparisons
 - Follow Landsat-7 Ground Track ± 3 km and ≈ 1 minute behind
- Maintain the health and safety of the spacecraft
- Validate and calibrate onboard orbit and attitude subsystems
- Perform orbit maneuver control to enable formation flying
- Provide mission planning and command management
- Archive raw and processed data

Operational Phases

Launch & Early Orbit

- Launch and the first several orbits, spacecraft checkout, and instrument turn-ons
- Approximately 15 days (20 days to get to 1 minute behind Landsat)
- 1 minute behind Landsat 7

Instrument Checkout

- Full instrument checkout
- Approximately 60 days

Nominal Ops

- Science Validation
- 10 months

End of Life

Deorbit burn for reentry within 25 years

Summary of Mission Overview

- The EO-1 mission is responsive to the 1992 Land Remote Sensing Act wherein NASA will use advanced technology to ensure Landsat data continuity
- It will flight validate improvements in:
 - Multispectral imaging
 - Hyperspectral imaging
 - Calibration
 - Atmospheric Correction
 - Spacecraft technologies useful to remote sensing
- The mission was successfully launched on November 21, 2000
- Selected EO-1 imagery will be available soon at:

http://eo1.gsfc.nasa.gov/miscPages/images.html

Section 4

Technology Transfer and Infusion

Technology Transfer and Infusion

- The NMP sponsors technology validation missions that lower the cost and increase the performance of future missions by rapidly infusing newly-validated technologies
- Technology transfer into new applications and infusion into future missions are therefore essential objectives of the NMP
- This workshop is the first of several to facilitate the transfer and infusion of EO-1 technologies
- Separate technology transfer documentation will be prepared for each technology
- Infusion opportunities tend to be specific to each technology and vary considerably
- All infusion discussions are treated confidentially

Technology Transfer

- Once the flight validations are completed, the EO-1 Mission Technologist completes the Technology Transfer documentation
- This consists of:
 - Description of the technology
 - Ground verification / validation
 - Technical validation on-orbit
 - Science validation on-orbit
 - Usage experiences both the ground and in space
 - **Proposed applications**
 - Technology infusion opportunities
 - **Contact information**
- Distribution of Technology Transfer Documentation:
 - Initially available on the EO-1 Web site
 - Workshops -- first in January 2001, second planned for August 2001
 - **Conferences**
 - **Published papers**

Technology Infusion

- Technology Infusion opportunities are described in the Technology Transfer Documentation
- They tend to vary from outright acquisition of the technology in the case of NASA-owned technologies to negotiated use in the case of commercially-owned technologies
- Technology infusion discussions are essentially follow-up activities to the distribution and presentation of the Technology Transfer documentation
- These discussions are held one-on-one with potential users and all are treated confidentially
- A specific Technology Infusion Plan is developed for those interested in incorporating a technology into a future mission
- Where appropriate, NASA is willing to provide limited funding to facilitate the infusion process
- The Mission Technologist is the contact for this process
 - Nick Speciale at 301-286-8704

NA SA NM

Technology Workshops

- First workshop in January 2001 with emphasis on the three EO-1 instruments:
 - Advanced Land Imager
 - Hyperion
 - Atmospheric Corrector
- Second, longer workshop planned for August 2001:
 - To discuss preliminary flight-validation results and usage experiences with the instruments
 - To discuss spacecraft technologies in the same detail as instruments
 - To review available Technology Transfer Documentation
 - To begin development and implementation of individual Technology Infusion Plans
 - To ponder the feasibility of an Extended Mission to consider data sharing arrangements and tasking opportunities to interested parties

NA SA N

Technology Workshops (continued)

- Third workshop planned for March 2002:
 - To present final results of flight-validations
 - To present Technology Transfer Documentation
 - To review status of existing Technology Infusion Plans
 - To review status of Extended Mission if approved for FY'02
 - To push to complete development of Technology Infusion Plans by end of FY'02
- ◆ EO-1 activities conclude at the end of FY'02:
 - Technology Transfer Documentation subsequently available through NMP
 - Subsequent Technology Infusion activities managed by NMP
 - EO-1 Lessons Learned completed by end of FY'02 and available through NMP

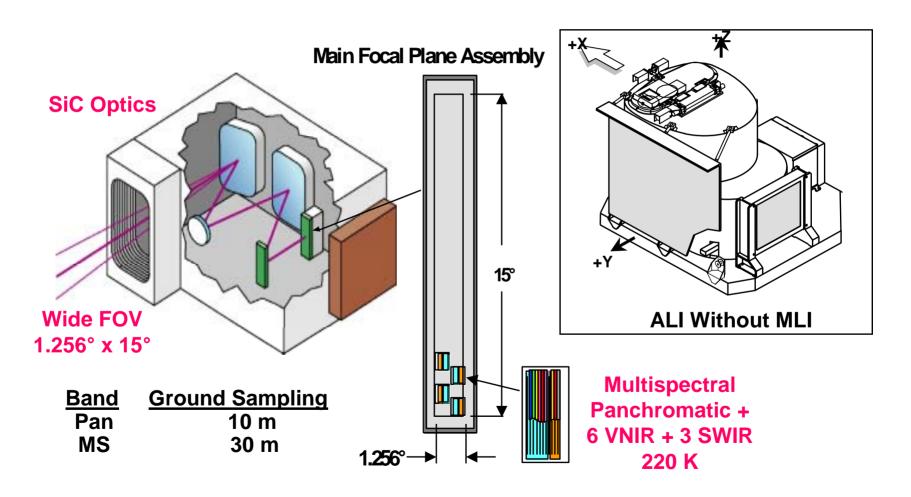
Section 5 Advanced Land Imager

ALI Instrument Scientist
MIT Lincoln Laboratory

ALI Program Manager
MIT Lincoln Laboratory

Topics of Discussion

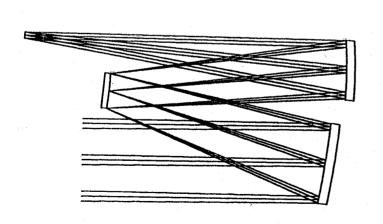
- ALI Overview
- Design and performance
- Pre-launch Calibration and Characterization
- Application to future Landsat instruments --technology transfer
- On-orbit performance assessment
- Summary

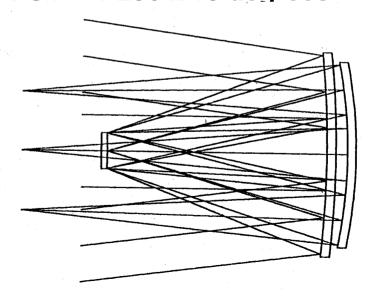

EO-1 Advanced Land Imager Overview

- Primary instrument on the first Earth Observing Mission (EO-1) of NASA's New Millennium Program (NMP)
- Objectives are to flight validate key technologies
 - Data continuity, advanced capability and cost reduction for future Landsat instruments
 - Innovative approaches to future land imaging
- The ALI instrument was designed and developed by MIT Lincoln Laboratory with NMP instrument team members
 - Raytheon SBRS for the focal plane system
 - SSG Inc. for the optical system

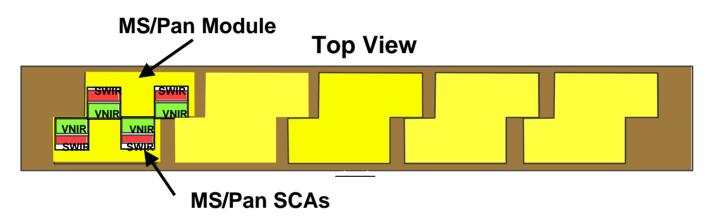
Driving Requirements

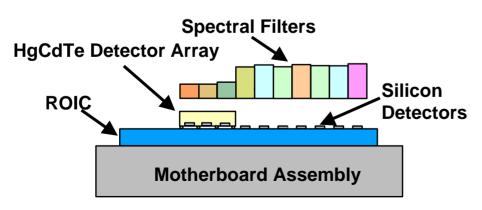
- Instrument architecture developed from technologies represented on the NMP IPDT
- Flight validation of technologies required to significantly reduce the risk for future missions
- Flight data must be amenable to science validation
- Measurement requirements were developed
 - From the bottom up by the IPDT
 - In collaboration with the earth science community
- Design must be scaleable to a full-up instrument


Advanced Land Imager (ALI)

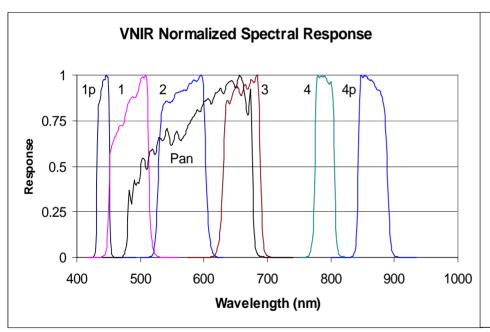


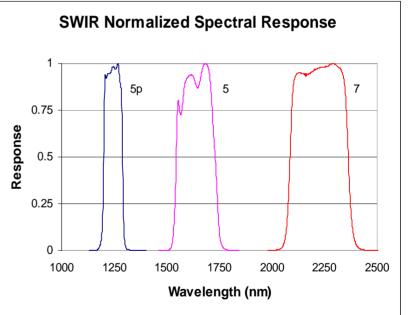
ALI Optical Design Form


- All reflective Cooke Triplet
 - –Aspheric primary
 - -Ellipsoidal secondary
 - -Spherical tertiary


- Aperture stop on secondary mirror
- Non-relayed design
- Near telecentric
- •FOV = $1.256 \times 15 \text{ degrees}$

Main Focal Plane Assembly

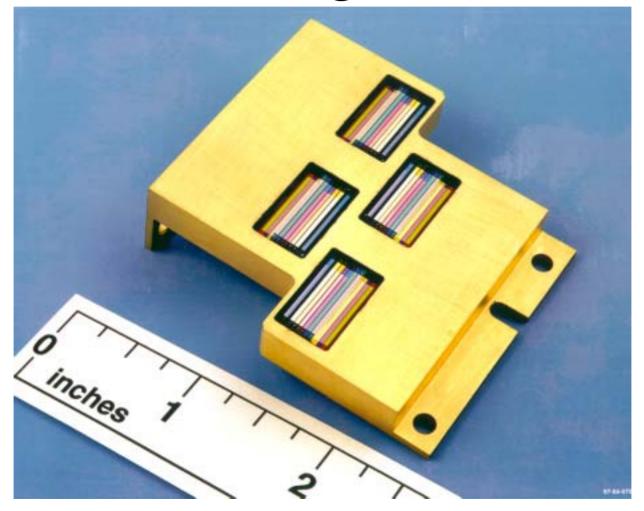



MS/Pan SCA

MS: Multispectral Pan: Panchromatic

ROIC : Read-out Integrated Circuit SCA : Sensor Chip Assembly SWIR : Short Wave Infrared VNIR : Visible Near Infrared

ALI Spectral Response Functions



EO-1 ALI MS/PAN

Spectral and Spatial Coverage

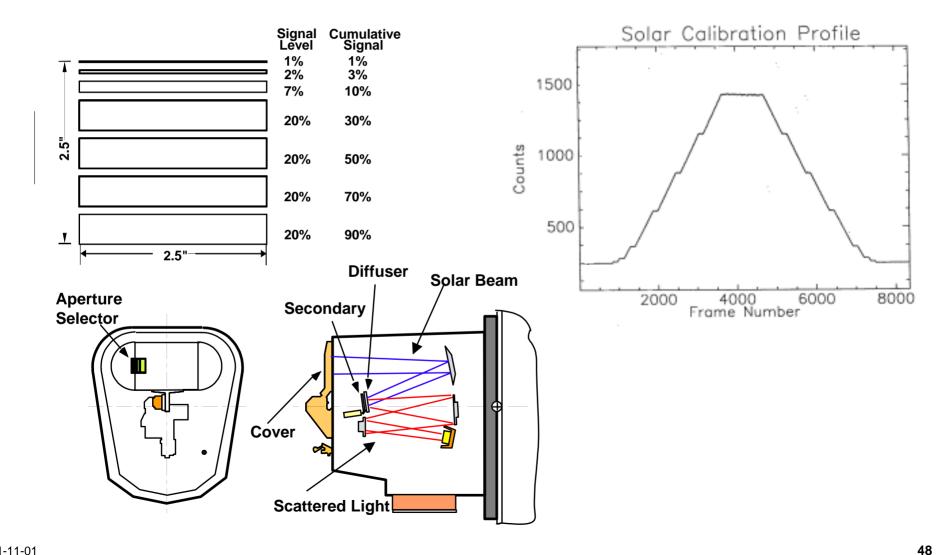
Band	Wavelength(µm)	Detector Type	GSD (m)	# of Detectors
Pan	0.480-0.690	Si Photodiode	10	3840
MS-1'	0.433-0.453			
MS-1	0.450-0.515			
MS-2	0.525-0.605	Ci Dhatadiada	20	1280
MS-3	0.630-0.690	Si Photodiode	30	Per Band
MS-4	0.775-0.805			
MS-4'	0.845-0.890			
MS-5'	1.200-1.300			1280
MS-5	1.550-1.750	PV HgCdTe	30	
MS-7	S-7 2.080-2.350		Per Band	

MS/PAN Flight Module

Partially Assembled Flight ALI

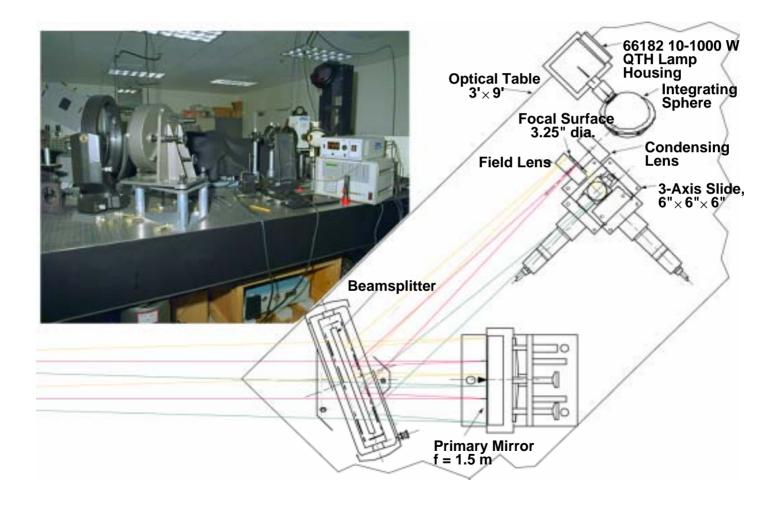
Telescope features

- 12.5 cm entrance pupil
- 15° x 1.26° field-of-view
- Telecentric, f/7.5 design
- Unobscured, reflective optics
- Silicon carbide mirrors
- Wavefront error = 0.11 λ RMS @ 633 nm



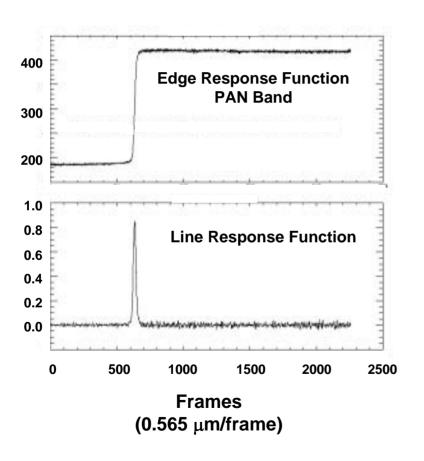
Installation
of ALI into
Thermal
Vacuum
Chamber

Solar Calibration

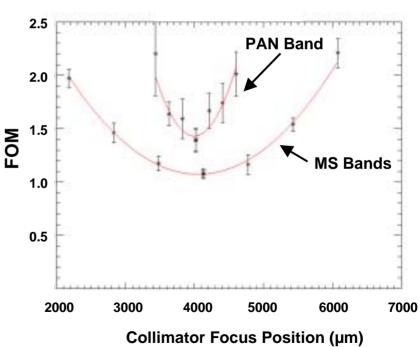


ALI Calibration Matrix

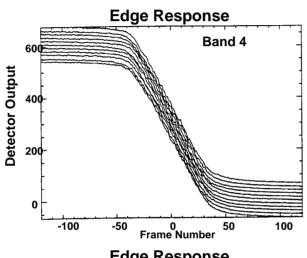
	Spectral Response Function	Response Coefficient	Zero Signal Offset	Pixel Angular Position	Modulation Transfer Function
Component Tests and Analysis		0	0		0
Subsystem Tests: Telescope and MS/Pan	0	0	0	0	0
Instrument-Level Laboratory Tests			0		
On-Orbit Measurements:					
Solar Calibration	_		_	_	_
Dark Current	_	_		_	_
Int. Reference Lamps	_		_	_	_
Lunar Scans	_		0	_	0
Earth Scenes	_		_	0	0

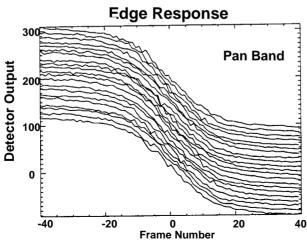

● Primary Measurement ○ Secondary Measurement

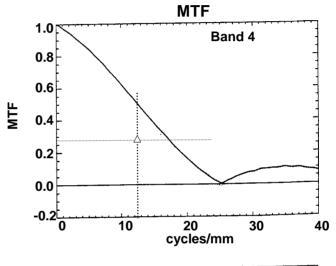
Imaging Test Optics

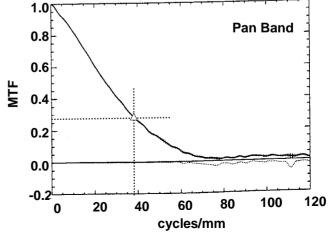


NA SA N

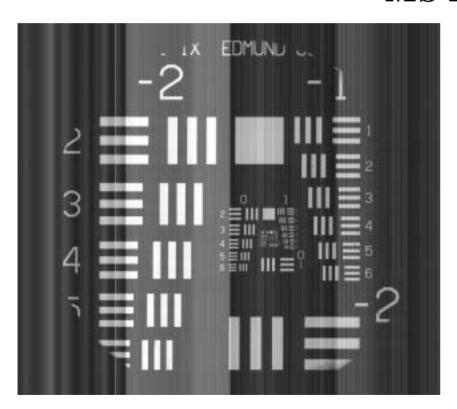

Focus Test







MTF Performance



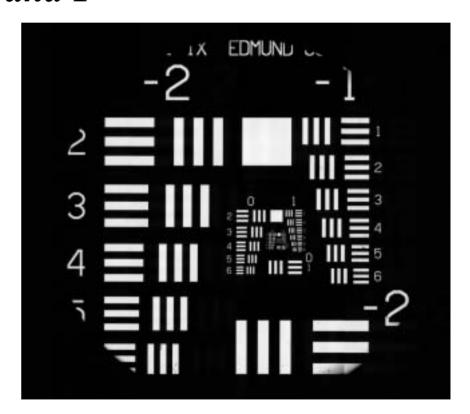
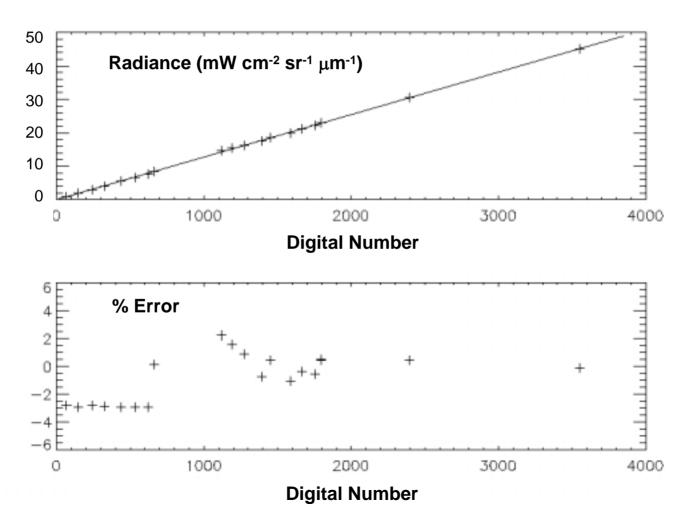
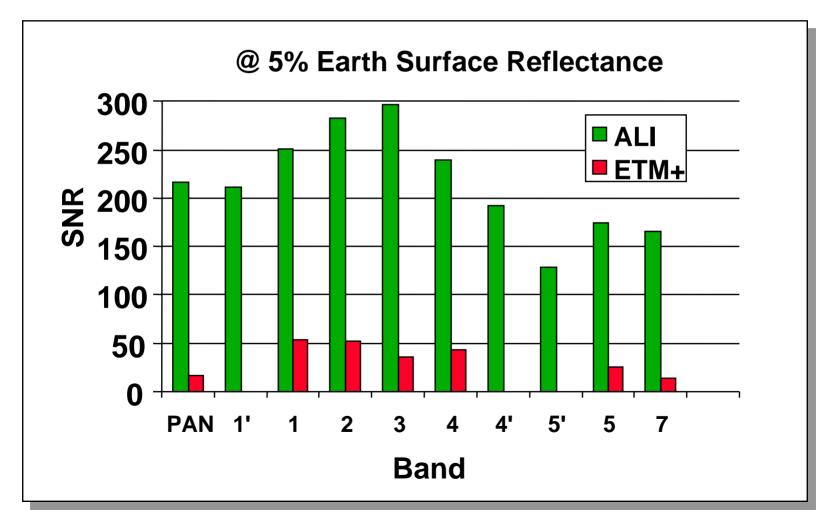


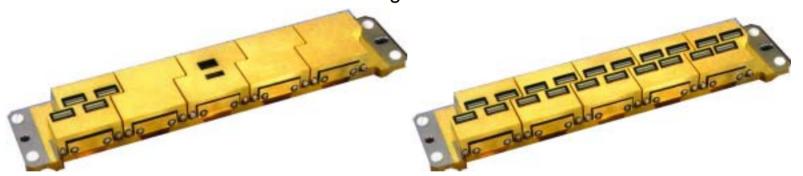
Image Reconstruction and Calibration MS Band 1




Reconstructed Raw Image

"Calibrated" Image

ALI Dynamic Range and Linearity


ALI SNR Performance

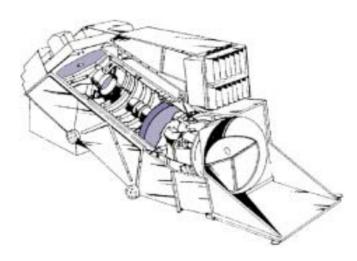
Growth Path to Advanced Instrument

Populate focal plane with 5 MS/PAN modules

- □ Full 185 km wide field-of-view
- □ Main Focal Plane bench designed for 5 modules



Changes required to accommodate full MS/PAN coverage


<u>Resource</u>	<u>ALI</u>	Advanced Landsat
Data Ports	1	5
Data Rate	102.4 Mb/s	512 Mb/s
FPE Power	~ 15 Watts	~ 50 Watts
FPA Size	30.7 x 6.6 x 5.2 cm	30.7 x 6.6 x 5.2 cm

Land Imaging Instrument Comparison

ALI - Concept for Future Landsat Instrument

Enhanced Thematic Mapper (ETM+)

100	Mass (kg)	425
100	Power (W)	545
$70\!\times\!75\!\times\!75$	Size (cm)	196×114×66
7, 3, 0	VNIR, SWIR, LWIR Bands	5, 2, 1
10, 30	Pan, MS Resolution (m)	15, 30
4-10	Relative SNR	1

296268-7P

NASA

ALI Technology Transfer

Objectives

- Reduce cost and improve data quality for the LDCM
- Exploit NASA's investment in the ALI technologies
- Utilize Lincoln Laboratory's unique ALI expertise

Methods

- Publications, reports, and documentation
- NASA-sponsored workshops at Lincoln Laboratory
- Technical support of an industry/government sensor development
- Characterization and calibration of sensors at Lincoln Laboratory
- Sensor integration and test by Lincoln Laboratory
- Funding for MIT/Lincoln Laboratory (an FFRDC)
 - Directly from NASA or other government agency
 - Cooperative Research and Development Agreement with industry developer

NASA

Summary

- The Advanced Land Imager is the primary instrument on the first Earth Observing Mission (EO-1) of NASA's New Millennium Program (NMP)
- The ALI has undergone extensive pre-launch calibration and characterization and has demonstrated excellent performance
- The EO-1 mission is now in progress and should successfully flight-validate the NMP technologies
- These technologies provide a path for lower cost, higher performance, future Landsat instruments
- MIT Lincoln Laboratory is interested in helping NASA transfer the ALI technology for application to future Landsat missions

On-Orbit Performance Assessment

- Preliminary flight data and status
- On-orbit performance assessment plan
- Summary

ALI Performance in Space

- ALI was turned on on November 25, 2000 (Day 5)
- Launch latches were released and a series of comprehensive tests were conducted showing nominal instrument performance
 - The temperature control has been excellent
- Obtained four earth scenes with the spacecraft pointing to nadir, i.e., the active part of ALI covering a swath 55 to 92 km east of the S/C ground track
 - Alaska, north-east of Anchorage
 - East Antarctica
 - Marshall Islands
 - North-central Australia

NASA NM

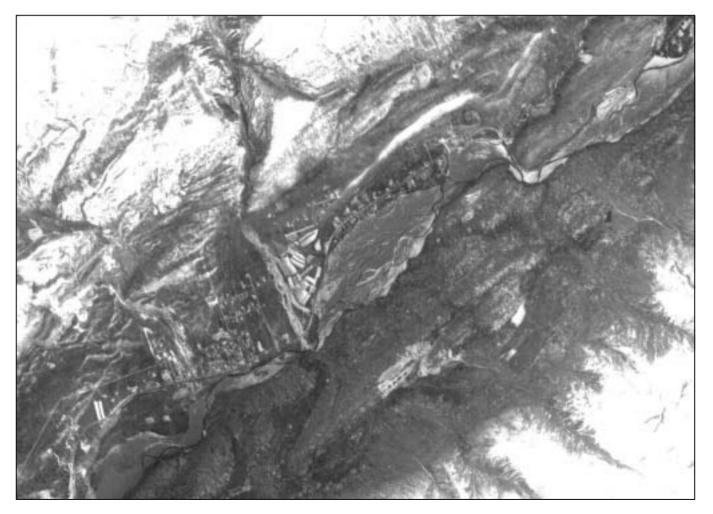
Mission Operations

- The first earth scene with all instruments operating simultaneously was obtained on December 1, 2000
- On December 15, 2000, EO-1 achieved its intended position, 1 minute behind Landsat 7
- On December 21, 2000, EO-1 began to point towards the desired target within the Landsat swath. Until then, most of the recorded scenes represented targets of opportunity with the S/C in a nadir pointing mode
- Comparison of ALI and Landsat scenes has not yet begun
- The number of scenes per day has gradually increased from two to six. Eight is the planned maximum in the first four months.
 - Four scenes per day will be acquired in the remainder of the first year
 - No firm plans yet for the remainder of life (EO-1 has 5 years worth of consumables)

Focal Plane Contamination

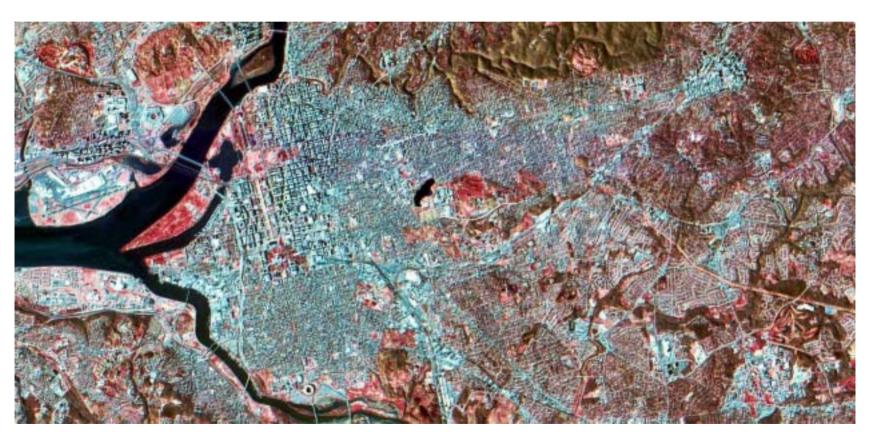
- Ground testing had revealed fine droplets forming on the cold focal plane after several days at -53 C. They boil off between -20 C and -10 C
- ALI is equipped with enough heaters to raise the focal plane temperature to -3 C which has been effective in evaporating the unknown contaminant
 - Bake-outs on-orbit were planned every two weeks
- In space, it was noted that the contaminant accumulation is more severe and occurs faster than on the ground. The bakeout is still effective in boiling off the contaminant(s).
 - Bake-outs will be conducted weekly and the performance will continue to be monitored closely

First ALI Image: Sutton, AK


(2000:330, MS 3-2-1)

First ALI Image: Sutton, AK

(2000:330, Pan zoom)



Washington, DC

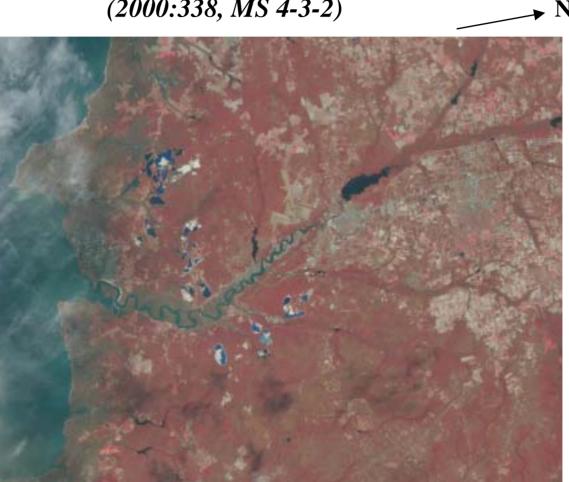
(2000:356, MS 4-3-2)



NASA

Washington, DC

(2000:336, Pan zoom)



68

Delaware Coast

(2000:338, MS 4-3-2)

Oahu,HI (2000:354, MS 3-2-1)

Focal Plane Functional Tests

- Zero signal noise characteristics
- Internal lamp illumination
 - Responsivity
 - Linearity
 - Stability
 - Contamination assessment
 - On-orbit sensitivity to FPA and optics temperature
 - Evaluation of dead and under performing pixels
- Focal plane decontamination

ALI Technology Validation: Spatial Tests

- Functional test of end to end imaging
- Focus
 - Point spread
 - Edge spread
 - Line spread
 - MTF
- Relative pixel line of sight
- Band to band image displacement accuracy
- Image artifacts

NA SA

ALI Technology Validation: Radiometric Tests

- Pixel to pixel calibration (flat field)
- Calibration stability
- Absolute calibration
 - In-band
 - Band to band
- Dynamic range
 - Saturation
 - Noise
- Sensitivity (SNR)
- Solar calibration
- Lunar calibration scan
- Calibration corrections for leaky pixels
 - Linearity
 - Dynamic range
- Stray light effects
 - Spatial
 - Radiometric

Generic Data Collection Events (DCE)

- A. Large flat metropolitan area with shore line
 - High contrast edge lines and points
 - Well known locations of key features
- B. Extended high albedo source with small dark regions
 - Clouds over ocean
- C. Steep topography
- D. Long bridges
- F. Large area with uniform known radiance (5-50% albedo)
- G. Adjacent regions with sharp boundaries and having different, uniform, but not necessarily known radiance levels
- H. Large area with uniform but unknown radiance
- J. MODIS calibration sites
- K. Landsat 7 geometric calibration sites
- L. Sun
- M. Moon
- N. Closed Cover (dark current)
- O. Night view of brightly lit metropolitan area
- S. Ground truth and under-flight targets
- T. Long duration target
- U. Angular dependence demonstration

Summary

- The performance of the Advanced Land Imager in space has been nominal.
- The radiometric calibration coefficients will be revised based the imaging of known ground scenes and the solar calibration.
 - An improved algorithm has been developed to deal with the two leaky pixels.
 - Weekly bake-outs of the focal plane will be conducted to boil off the accumulating contaminants.
- The required data base is been collected and will be followed by in-depth analysis of all aspects of instrument performance.

Section 6

Hyperion Grating Imaging Spectrometer

. . Steve Carman

Hyperion Project Manager TRW Space & Electronics

Outline

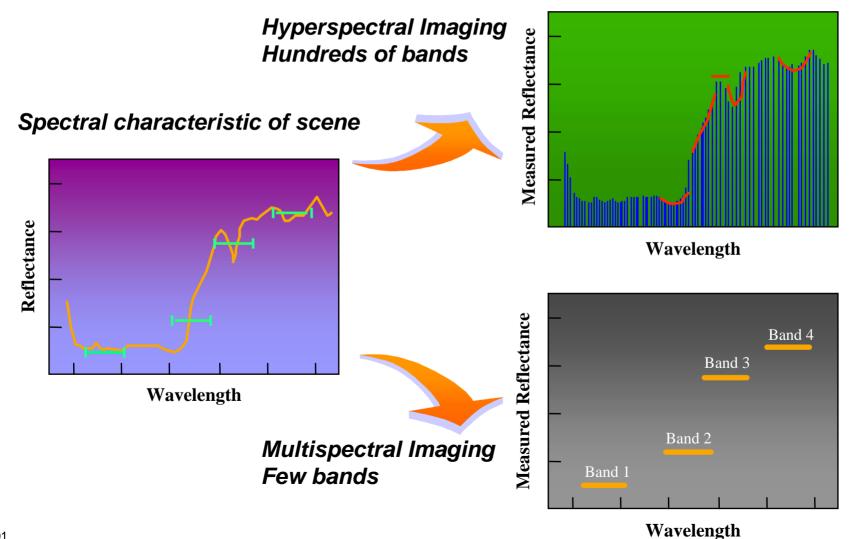
- Driving Requirements
- Design Overview
- Performance Requirements
- Calibration/Characterization
- Flight Validation

Hyperion Driving Requirements

... Steve Carman

Hyperion Project Manager TRW Space & Electronics

Purpose of Hyperion on EO-1

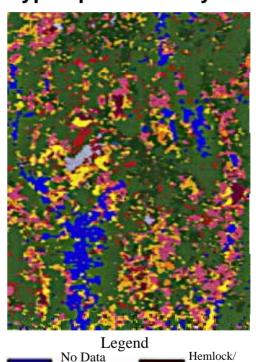

- Hyperion is the first hyperspectral imager in space, demonstrating this new technology
 - Hyperion will set the standard for hyperspectral imagery, enabling NASA to establish minimum requirements for future data buy
- Hyperion FOV is coaligned with ALI's active area to enable crosscalibration of earth scenes with complete spectrum
 - Discrete channels on Landsat and ALI can be checked with Hyperion
 - Comparison with Terra MODIS and ASTER also planned
- Hyperion satisfies NASA's desire to replace the Hyper-Spectral Imager (HSI) that was lost with the Lewis mission.
 - This new technology can provide unique insight into many scientific and commercial disciplines

Hyperspectral Imaging Applications & Benefits

Application	Existing Satellite Capabilities (SPOT, LandSat)	Hyperion Capability	Perceived Benefits
Mining/Geology	Land cover classification	Detailed mineral mapping	Accurate remote mineral exploration
Forestry	Land cover classification	Species ID Detail stand mapping Foliar chemistry Tree stress	Forest health/infestations Forest productivity/yield analysis Forest inventory/harvest planning
Agriculture	Land cover classification Limited crop mapping Soil mapping	Crop differentiation Crop stress	Yield prediction/commodities crop health/vigor
Environmental Management	Resource meeting Land use monitoring	Chemical/mineral mapping & analysis	Contaminant Mapping Vegetation Stress

NASA

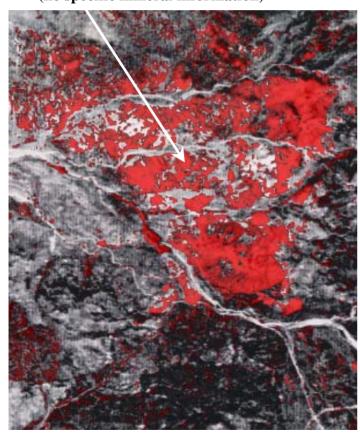
Hyperspectral and Multispectral Scene Characterization


Hyperspectral Image Provides Forestry Detail

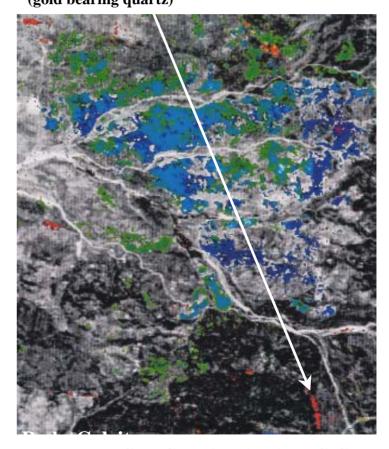
LandSat Analysis

Legend
No Data
Hardwood
Softwood
Grass/Fields

Hyperspectral Analysis



Hyperspectral Image Provides Geological Data


GEOTHERMAL AREA

(no specific mineral information)

MULTISPECTRAL ANALYSIS

CALCITE (gold bearing quartz)

HYPERSPECTRAL ANALYSIS

Analysis courtesy AIG Limited Liability Company

NASA

Roof Analysis and Mapping Project - Redondo Beach Middle Schools

Objective: Provide detailed map of roof composition clusters for Redondo

Beach, CA fire department

Aerial Photo

Roof Composition Analysis Using Hyperspectral Data

Asphalt 1

Wood

A

Asphalt 2

Tile

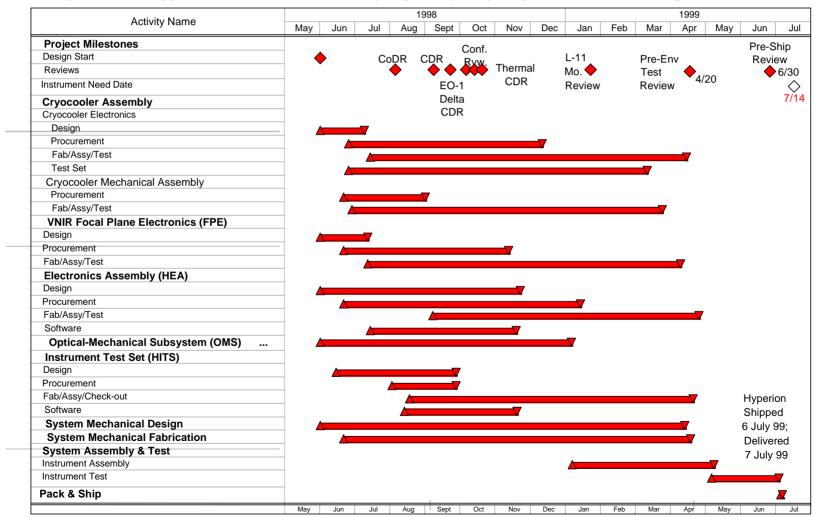
Asphalt 3

NA SA NMF

Hyperion Hyperspectral Imager

- Hyperion is a push-broom imager with:
 - 220 10 nm bands covering the spectrum from 0.4 μm - 2.5 μm
 - 6% absolute radiometric accuracy
 - Image swath width of 7.5 km
 - IFOV of 42.5 μ rad
 - GSD of 30 m at 705 km altitude
 - 12-bit image data
 - MTF 0.34 0.48
 - Power: 51W orbit avg., 126W peak
 - Mass: 49 kg

Hyperion
12 months from order to delivery



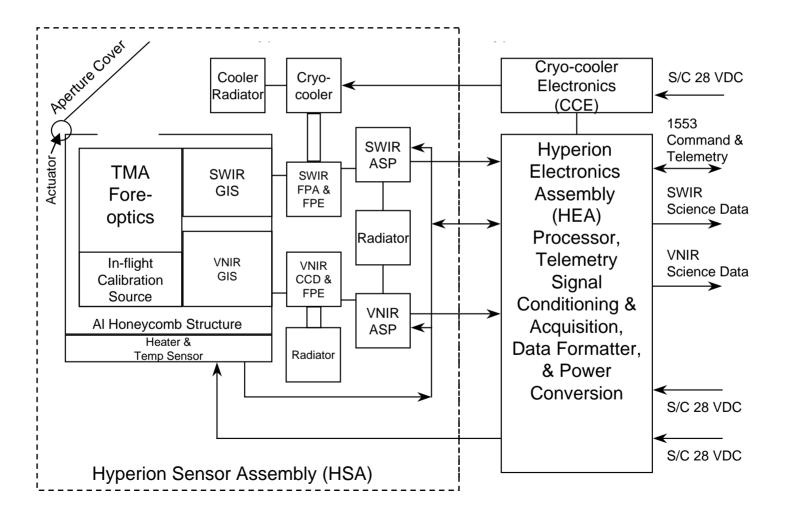
Hyperion Origins

- ◆ Following contract termination of planned Grating Imaging Spectrometer (GIS) and Wedge Imaging Spectrometer (WIS) due to technical problems, TRW offered to build Hyperion, a hyperspectral GIS integrated with the Advanced Land Imager (ALI), to be assembled from Lewis Hyperspectral Imager (HSI) spares and delivered to EO-1 in just 12 months
- Hyperion instrument redefined in first week of project as a standalone instrument to simplify EO-1 integration by eliminating integration with ALI
 - Added foreoptics and structure design based on spares from the Electro Optical Camera (EOC), another TRW instrument program
 - Schedule remained 12 months to delivery
- Even with a tight one-year schedule, the EO-1 quality requirements and technical design reviews were fully incorporated into the Hyperion program

Hyperion Master Schedule

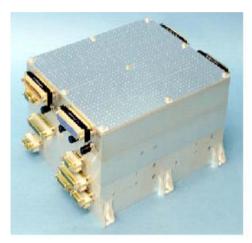
Even though Hyperion was an extremely fast-paced program, the parts selection and design standards were not compromised. Hyperion met the GSFC/EO-1 program quality requirements, including numerous reviews.

Key System Trades & Critical Analyses


- Dichroic Beam Splitter Vs. Dual Blazed Grating
 - Selected Dichroic separation of VNIR and SWIR requiring two gratings, improving performance over dual blazed grating
- Instrument Spectral Bandwidth
 - Trade to maximize signal-to-noise ratio by optimizing the 10nm spectral width and the number of channels
- Thermal Control of Opto-Mechanical Structure
 - Moved heaters from outside of honeycomb enclosure to the OMS structure inside honeycomb enclosure to save heater power.
- 1553 / 1773 Conversion
 - Selected transceiverless 1553 chip that matched input to EO-1 1773 fiber optic device, avoiding significant expense of developing a separate converter

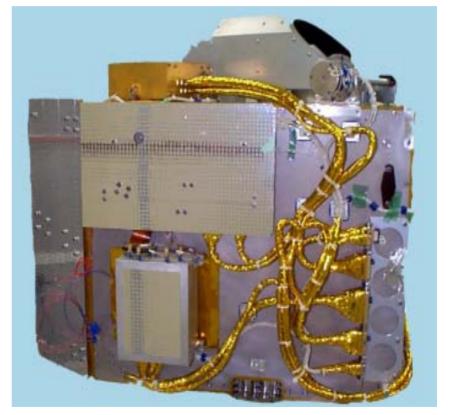
Hyperion Design Overview

... Steve Carman


Hyperion Project Manager TRW Space & Electronics

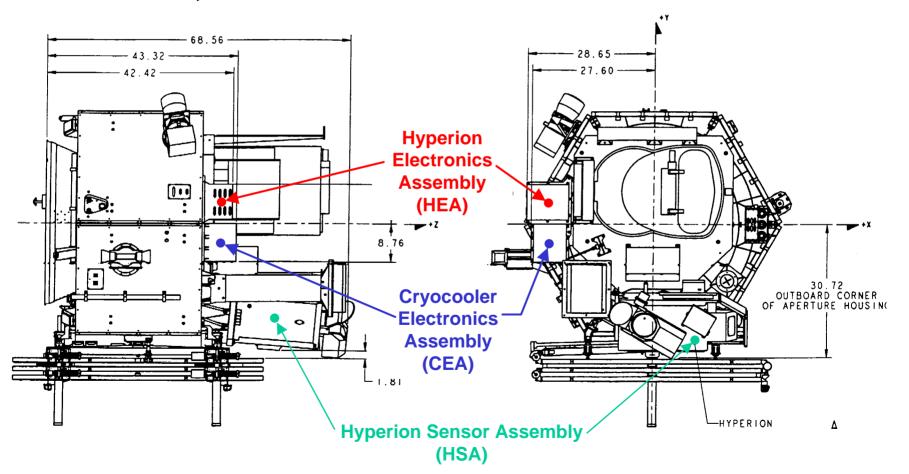
Hyperion Functional Block Diagram

NASA


Hyperion Subassemblies

Hyperion Electronics Assembly (HEA)

Cryocooler Electronics Assembly (CEA)

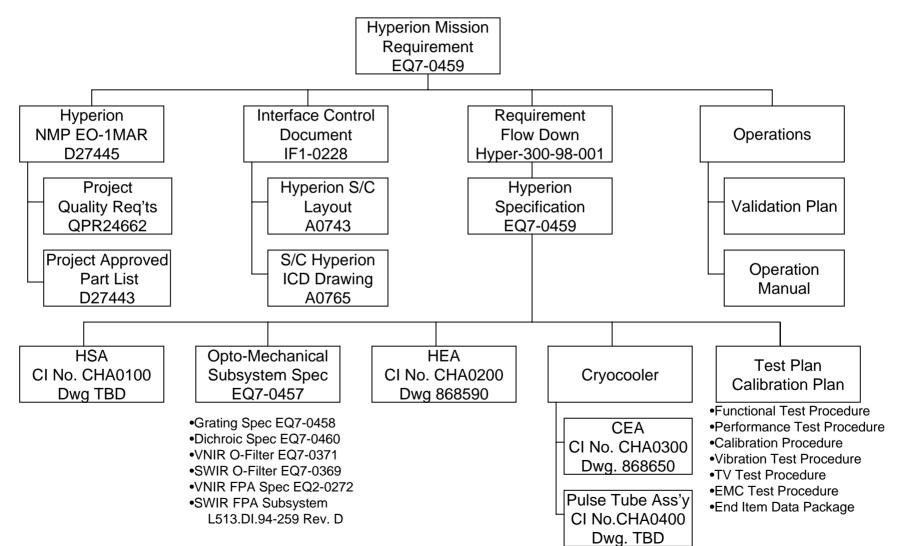


Hyperion Sensor Assembly (HSA)

NA SA NIM

Hyperion Spacecraft Accommodation

HSA, HEA and CEA locations on the EO-1 nadir deck


Hyperion Performance Requirements

... Steve Carman

Hyperion Project Manager TRW Space & Electronics

NA SA NI

Hyperion Requirements Flowdown

Hyperion Performance Requirements

Instrument Parameter	Requirement
GSD at 705 km Altitude	30 +/- 1 m
Swath Width (km)	7.5 km minimum
Spectral Coverage	0.4 - 2.5 μm
Imaging Aperture	12.5 +/- 0.1 cm diameter
On-orbit Life	1 year (2 years goal)
Instantaneous Field of View	42.5 +/- 3.0 μrad
Number of Spectral Channels	220 minimum
SWIR Spectral Bandwidth	10 +/- 0.1 nm
VNIR Spectral Bandwidth	10 +/- 0.1 nm
Cross-track Spectral Error	<1.5 nm (VNIR), <2.5 nm (SWIR)
Spatial Co-registration	<20% of Pixel
Absolute Radiometric Accuracy	<6% (1 sigma)
Data Quantization	12-bit
Operability (SWIR, VNIR)	> 98% each*

Signal to Noise Ratio (SNR)

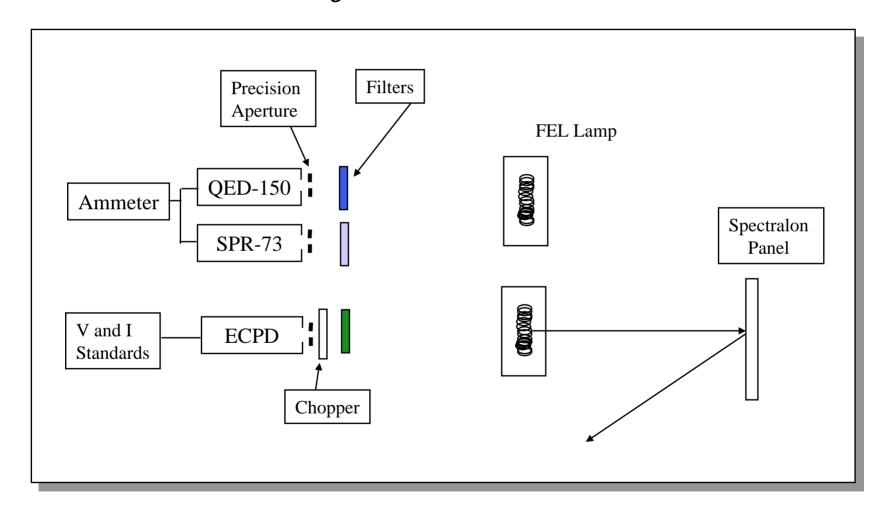
λ-range (μm)	SNR
	(min)
0.55-0.70	60
1.0-1.05	60
1.20-1.25	60
1.55-1.60	60
2.10-2.15	30

Modulation Transfer Function (MTF)

	VNIR MTF @ 8.33 l/mm			SWIR MTF @ 8.33 l/mm			
Wavelength							
(μm)	0.45	0.63	0.90	1.05	1.25	1.65	2.20
Minimum							
MTF	0.20	0.20	0.15	0.14	0.14	0.15	0.15
Requirement							

Hyperion Calibration/Characterization

... Peter Jarecke


Hyperion Calibration TRW Space & Electronics

Radiometric Quantities To Be Characterized

- FPA Rectilinearity
 - Cross-Track Spectral Alignment (CTSA)
 - Spatial Co-Registration of Spectral Channels (SCSC)
- Image Quality
 - Cross-track and Along-track MTF
- Radiometric Responsivity Calibration
 - Long Term Repeatablity
- Pixel Center Wavelength Calibration
- Signal to Noise
- Ground Sample Distance and Swath Width

NASA

Overview of Calibration Process

NA SA NM

Conversion to Radiance

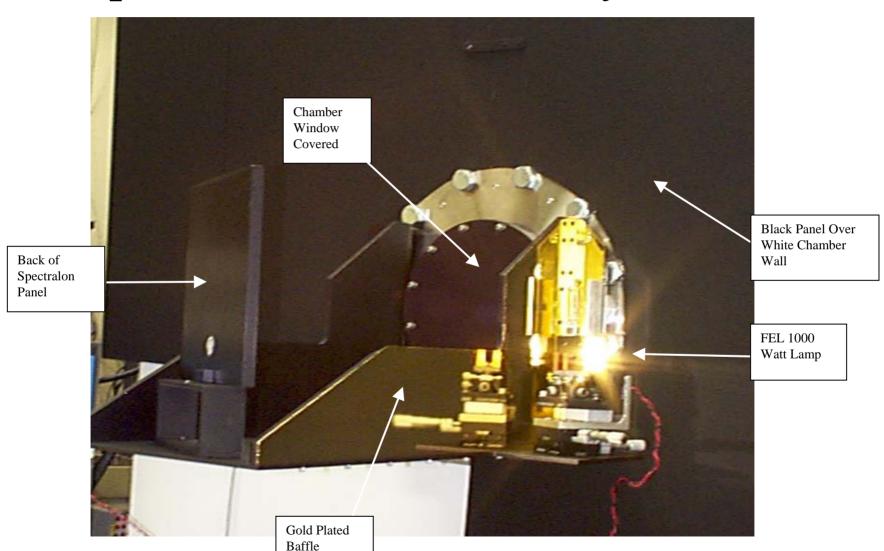
Footprint on Spectralon Panel

± 7° AOI from normal to limits of the Hyperion sensor footprint

ASD data taken at 5 points transverse to Hyperion view with 5° FOV field limiter

Hyperion 12.5 cm Aperture 0.43 degree FOV views Spectralon at an AOI of 26°

FEL Lamp


FEL Incident Irradiance falls as cos³ of the AOI which is a 2.5 % falloff in Irradiance

The BRDF characteristics of the Panel are critical in converting FEL Irradiance incident on the Panel to Radiance. The assumption that the BRDF is flat from 19° to 33° based on vendor data was tested using an ASD Field Spec as shown. ASD data matched the 2.5 % falloff to + 0.3 %

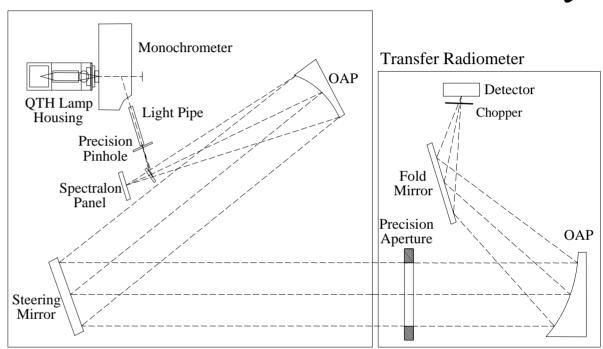
99

Spectralon Panel Assembly Installed

NASA

Hyperion Radiometric Characterization Facility

Formerly Known as the MSTB - Upgraded for


Hyperion Characterization

Two modes of Operation:

- 1) Pinhole, slit and/or Knife Edge at end of light pipe put at focus of OAP
- 2) End of light pipe is re-imaged onto Spectralon panel.

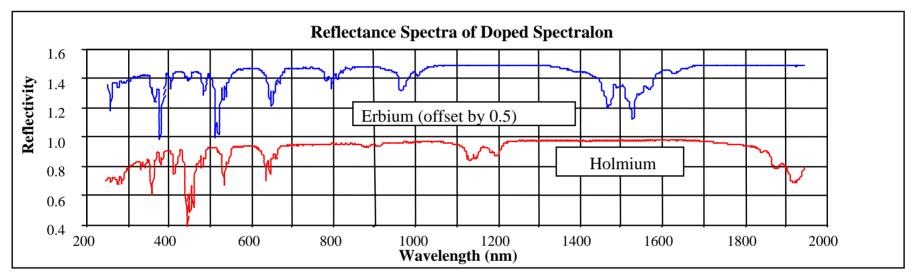
Both are shown simultaneously in chart without re-imaging optics

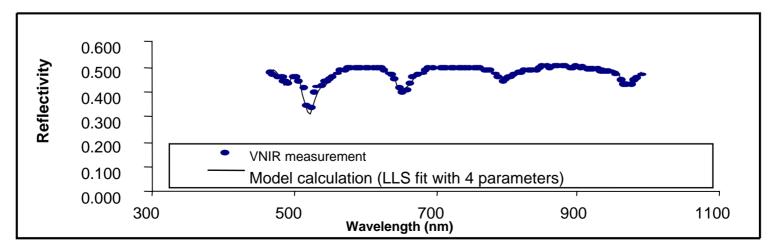
Steering mirror is a two axis, fine pointing mirror (± 1–2 μrad) for sub-pixel scanning in spatial dimensions

The transfer radiometer is a removable box for calibration of the Characterization Facility output.

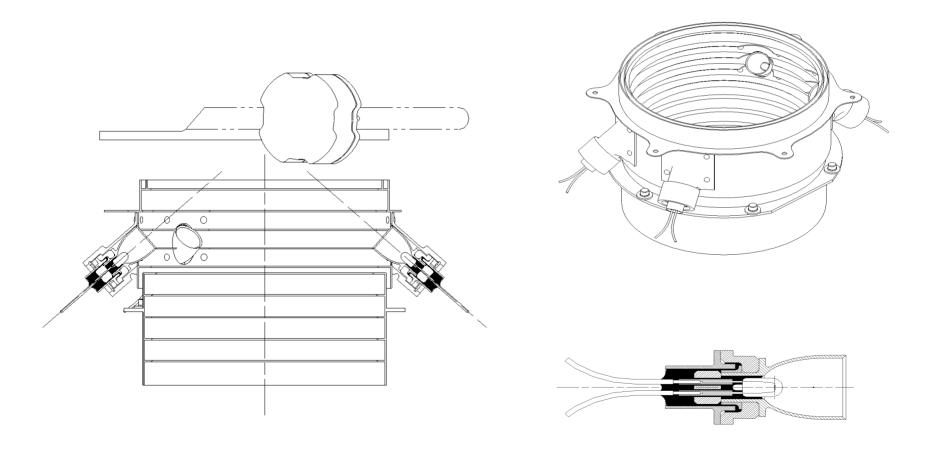
It uses a chopped pyroelectric detector traceable to the TRW primary irradiance scale.

An accurate $A\Omega$ is calculated from precision apertures and OAP focal length.




Spectral Wavelength Calibration

- High resolution scans of the Holmium and Erbium Oxide doped Spectralon are shown in the next chart.
- Two sensor data frames are taken: one from a doped Spectralon panel and one from a high reflectance Spectralon panel.
- The ratio of these two frames removes lamp illumination source wavelength variations and sensor response variations.
- To derive a calculated curve for the above data, the high resolution scans are convolved with the sensor spectral response function. This degrades the high resolution scans to the lower sensor resolution.
- A linear least squares (LLS) regression of the data points with the curve fixes the wavelength calibration of the sensor. Each spatial FOV position is calibrated in wavelength simultaneously for all spectral pixels saving time greatly.
- The linear regression at each FOV position allows three constants for wavelength values at the pixel center (i.e. a second order fit in I versus pixel number). The width of the sensor pixel response function is also allowed to take on a best fit value for the LLS.
- The accuracy of the fit is about 0.02 pixels (judgement call based on the width of the standard error minimum of the LLS fit)


NA SA N

Spectral Wavelength Calibration

In-Flight Radiometric Calibration

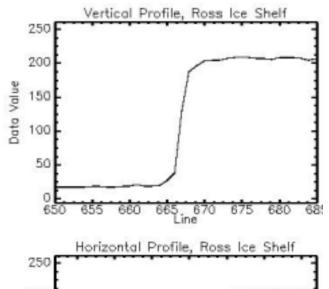
On-Orbit Calibration Verification

Item	Req.	Ground	On-Orbit Approach
Absolute	< 6%	<6%	will combine solar calibration, lunar calibration, internal calibration and vicarious calibrations to address absolute calibration (refer to flow chart)
			models of sun and moon are required
			error budgets associated with vicarious calibration required
Linearity		linear (~1%)	will assume linear and verify (if possible) using results of the absolute calibration events
Calibration Source Stability			calibration lamp image obtained with each DCE and performance of the lamp will be trended
			absolute measure of lamp radiance will be performed when making absolute measurements described above
			results compared with calibration values and suspected drift

Radiometric Long Term Monitoring Plan

Item	On-Orbit Approach
Stability	scenes identified as being repeatable will be obtained multiple times and compared: Saharan, TBR
	sites selected for vicarious calibration can also be used especially if obtained multiple times
	response from calibration lamps will be trended
Temperature Sensitivity	VNIR: ASP temperature controlled, FPE temperature sensitivity will be established
	SWIR: ASP temperature could be controlled, FPE temperature is controlled by the cryocooler
	orbital temperature variations will be trended
Flatfield (streaks)	use internal calibration lamp to adjust for time of scene gain changes if present

NA SA NMF


Image Quality

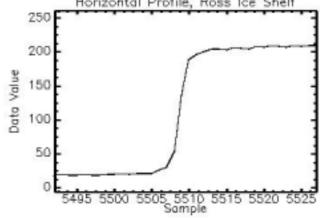
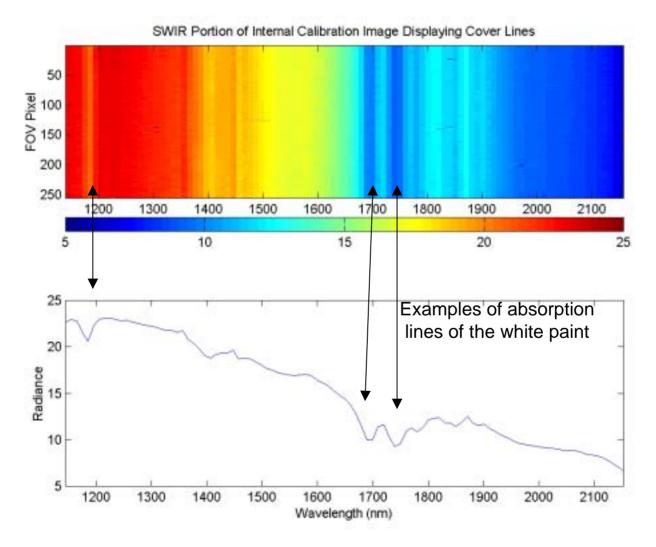

Item	Req.	Ground	On-Orbit Approach
GSD	30 m ±1m	29.88 m	Use scenes that contain objects with known separation distance, need ground truth of scene potentially use digital images: Cities ex: El Segundo, Active Illumination determine pixel distance between centroid of independent features
			need multiple measurements to de-couple cross track and along track distance
Swath Width	> 7.5 km	> 7.5 km (7.65 km)	Extension of cross track GSD and number of used FOV pixels
Swath Length		160 km based on 24 second DCE	Extension of along track GSD and length of DCE

Image Quality Example


Vertical and Horizontal MTF can be calculated from diagonal edge

Spectral Calibration Using Internal Calibration System

Hyperion Flight Validation

... Dr. Carol Segal

109

Hyperion Deputy Project Manager, Mission Operations TRW Space & Electronics

Hyperion Performance Verification

 The On-orbit Performance Verification Plan was completed in preparation for the on-orbit 60 day checkout period:

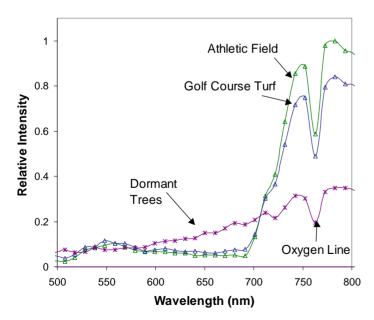

Phase	Description	Day	Function
1	Initial VNIR Turn On	6	Perform Instrument Functional Tests
2	Heated Outgassing	7-17	Monitor Trended Parameters VNIR Internal Calibration Assess Processing Turn-around time VNIR Earth Image Collection
3	Instrument Verification Assess Readiness for Characterization	18-30	Cryocooler Operational – SWIR Turn-on SWIR Internal Calibration VNIR SWIR Earth Image Collection
4	Instrument Characterzation Calibration	18-60	Assess Instrument Performance Initialize Long Term Characterization

NASA

Hyperion Activation

Instrument Subsystem	strument Subsystem Activation Date/Time	
HEA	27 Nov 00, GMT=332:1232	(phe-)NOMINAL
Analog Signal Processors	27 Nov 00, GMT=332:1410	(phe-)NOMINAL
Heaters	27 Nov 00, GMT=332:1600 – all heaters cycling @ nominal temps	(phe-) NOMINAL
Internal Calibration Lamps	27 Nov 00, GMT=332:1427	(phe-)NOMINAL
Aperture Cover	27 Nov 00, GMT=332:1915	(phe-)NOMINAL
VNIR Focal Plane (1st image)	27 Nov 00, GMT=332:1601 – internal cal 28 Nov 00, GMT=333:0526 ground	(phe-) NOMINAL
Cryocooler	29 Nov 00, GMT=334:1716 – functional test 8 Dec 00, GMT=343:1426 – 1st cooldown	(phe-) NOMINAL
SWIR Focal Plane (1st SWIR image)	8 Dec 00, GMT=343:1921 – internal cal 8 Dec 00, GMT=344:0030 ground	(phe-) NOMINAL

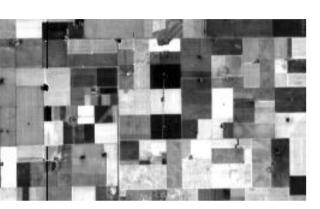
On-Orbit Repeatability of Calibration Lamp

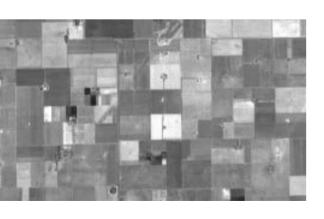


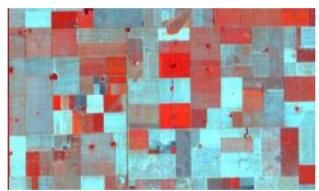
Hyperion Image of Fairfax, VA December 2000

Image taken by Hyperion shows the relative chlorophyll content of vegetation in Fairfax County. The spectral profiles indicate healthy grass in the athletic field and golf course. The spectral profile of the trees indicates dormant vegetation.

Vegetation

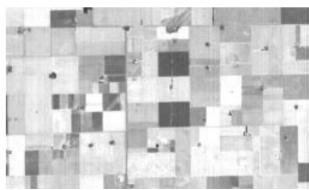

Oxygen in the atmosphere is detected by the spectral profiles in the near infrared wavelength.


Verrazano-Narrows Bridge, New York



VNIR Band 30: ~650 nm

Geometric: Example

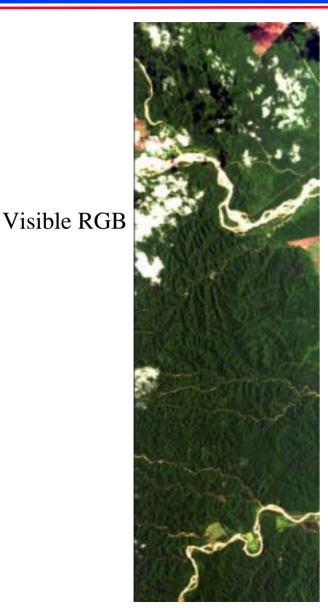

Cordoba Soybean

False RGB, Red is healthy vegetation: 51,23,16

~(864,578,507 nm)

SWIR Band 85: ~993nm

SWIR Band 150: ~1649 nm


VNIR Band 40: ~752 nm

Oahu, HI

Tariquia, Bolivia

False RGB Representing Pixel Purity

Section 7

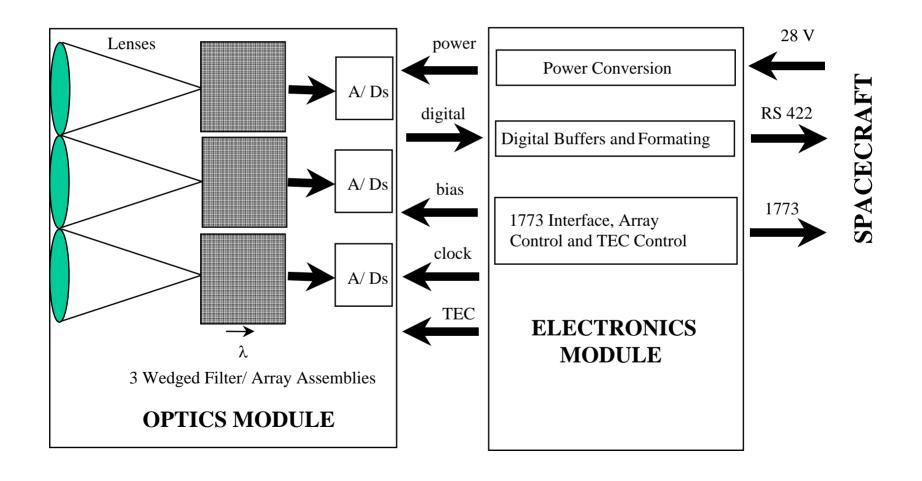
LEISA Atmospheric Corrector (LAC)

. Dennis Reuter

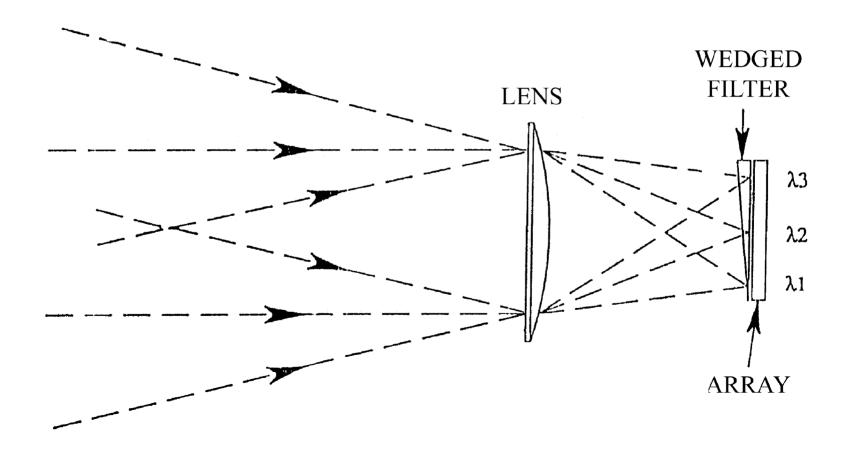
EO-1 LEISA Atmospheric Corrector

Requirements

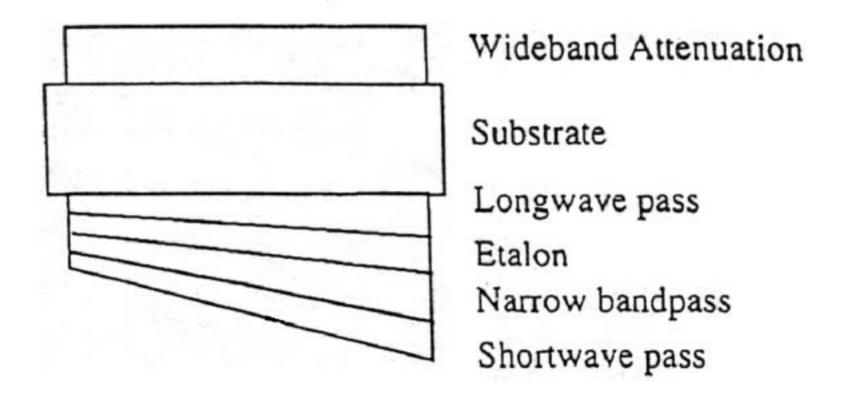
- Correct High Spatial Resolution Multispectral Imager Data for Atmospheric Effects
- Hyperspectral Imager
- Moderate Spectral Resolution (<10 nm)
- Moderate Spatial Resolution (<300 meter)
- Minimize Impact on Spacecraft Resources
- Maximize Flexibility

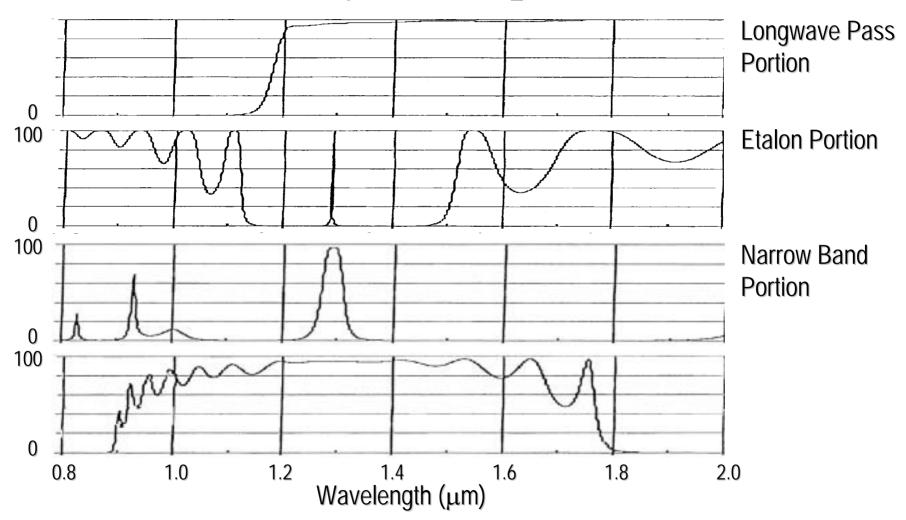

NASA NI

Contribution to EO-1

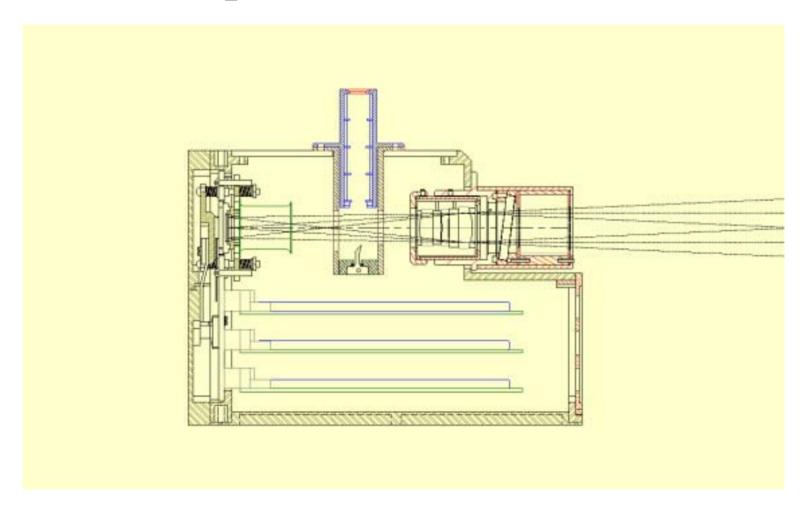

- Validation of Wedged Filter Approach for Spacecraft Instrumentation
- Atmospheric Correction for ALI Multispectral Images.
- Atmospheric Correction for Landsat-7 Images (Formation Flying).
- Direct Study of Spatial Resolution Degradation (Cross-Comparison with Hyperion).
- Retrieved Atmospheric Parameters.
- Cross-Comparisons with MODIS.

NA SA N


LAC Block Diagram


Wedged Filter Operation

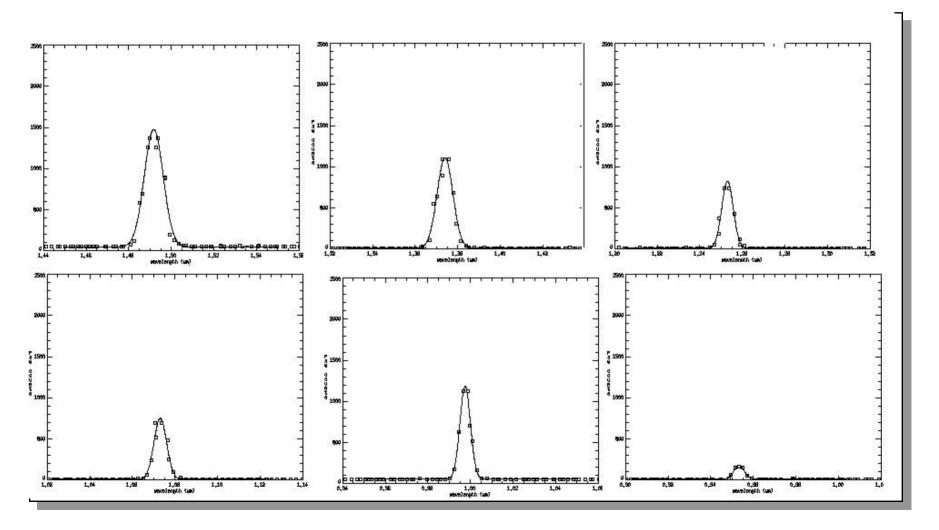
Wedged Filter Schematic

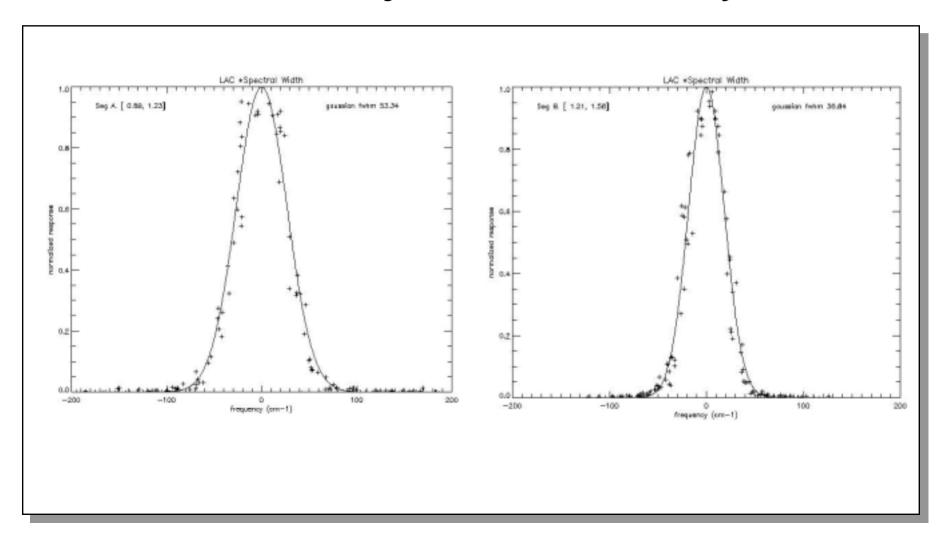


Filter Layer Composite Detail

NA SA N

Optics Module Detail


LAC Internal Detail


LAC Performance

- Spectral Coverage: ~0.9 1.6 µm; 256 Bands Selected for Optimal Correction of High Spatial Resolution Images.
- Spectral Resolution 2 Filter Sections: Section 1 ~35 cm⁻¹ ($\Delta\lambda$: 5 nm @ 1.2 μ m, 9 nm @ 1.6 μ m) Section 2 ~55 cm⁻¹ ($\Delta\lambda$: 4 nm @ 0.9 μ m, 8 nm @ 1.2 μ m)
- Swath Width: ~185 km; Matches Landsat
- Spatial Resolution (pixel): 356 µradian (250 meter @ 705 Km).
- Three 256 x 256 Element InGaAs Arrays; TEC Stabilized (<285 K).
- Three 15 Degree FOV 3 Element Lenses
- Two Modules: "Bolt-on" Optics Module and Electronics Module.
- Mass: 10.5 kg (EM, 4.4 kg; OM 3.9 kg; Cable 2.2 kg)
- Power: 48 W (Peak); <15 W (Orbital Average)

LAC Line Widths

LAC Half-Width Summary

LAC System Trades

- Spatial Resolution vs. Spatial Coverage
 - 250 meter spatial resolution near maximum required for atmospheric correction
 - 185 km Matches Landsat7
 - Requires three 256 x 256 arrays
- Thermo-Electric Coolers (TEC) vs. Passive Radiators
 - TECs require more power, but significantly simplify integration and operations
- Wedged Filter vs. Conventional Technologies
 - Wedged filter data Analysis systems not as developed but instrument has less mass and complexity than conventional
 - No moving parts

LAC System Trades

- IR vs. Visible Spectral Coverage
 - IR gives better water vapor and cirrus cloud information at the expense of aerosol information
 - InGaAs arrays now can cover 0.5 to 1.7 micron
- 1.6 vs. 2.5 micron Longwave Cutoff
 - Cryogenic cooling not required
- Two Module vs. 1 Module Design
 - Gain in system flexibility and platform independence compensates for increased mass and additional integration

LAC Performance Testing

Box Level

- All Cards Simulated on an Individual Basis
- TECs Tested with Engineering Backplane (Focal Plane)
- Focal Plane Timing Tested with Multiplexers

Subsystem Level

- OM: Limited Set of Images Obtained with EM Simulator
 - Engineering Model Vibration Tested
- EM: Operation Tested by Interface to OM Simulator

Instrument Level

- Vibration and Thermal-Vacuum
- Radiometric/ Spectral Calibration and Alignment

– EMI/EMC

NASA

LAC Test Descriptions

Vibration:

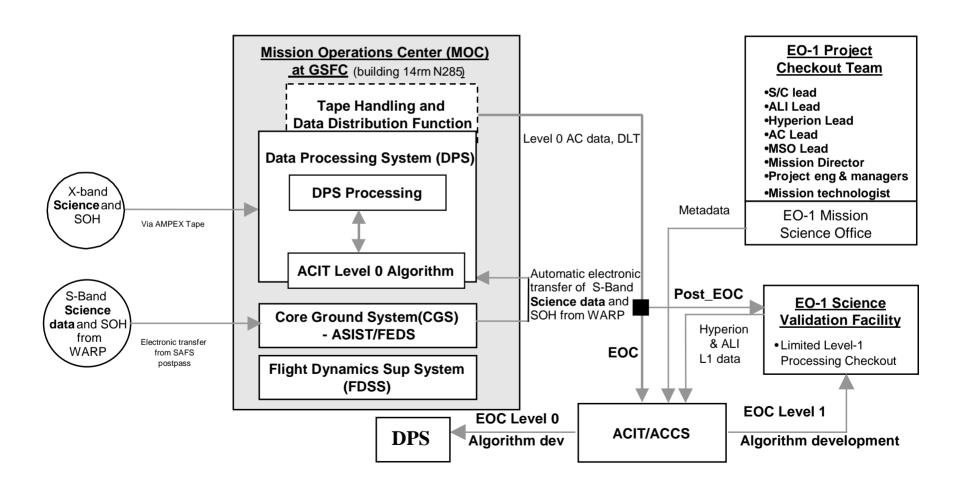
- Individual Modules Tested to Proto-flight Level (1.25 X Expected Maximum Flight Loads)
- Instrument Mounted on Spacecraft and Tested to Flight Level
- Thermal Vacuum (Pre-spacecraft Integration):
 - Four Cycles to Survival Levels (-10 $^{\circ}$ C to + 50 $^{\circ}$ C; Range Expected on Orbit 20 $^{\circ}$ C \pm 10 $^{\circ}$ C)
 - Operation from 0° C to 30° C (Orbital Predict 20° C, 30° C Worst Case)
 - Images Obtained Using LAC GSE
- Thermal Vacuum (Integrated with Spacecraft):
 - Four Cycles
 - Operation from 0° C to 30° C (No Operation at 40° C)
 - Images Using Spacecraft System (WARP, XPAA, etc.)

LAC Test Descriptions

EMI/EMC:

Instrument Level Tests: Conducted and Radiated Emissions. and Radiated Susceptibility

Alignment:


- Orientation of Arrays with respect to Alignment Cube Using **Theodolites**
- LAC Alignment to ALI on Spacecraft Using Theodolites

Optical Calibration:

- Wavelength and Instrumental Shape: Grating Monochrometer 1 to 100 nm Steps
- Radiometric: Calibrated Black-body (all 4 TEC Settings)
- Flat Field: Diffuse Source Illuminating Lenses and Solar **Calibrators**

NASA

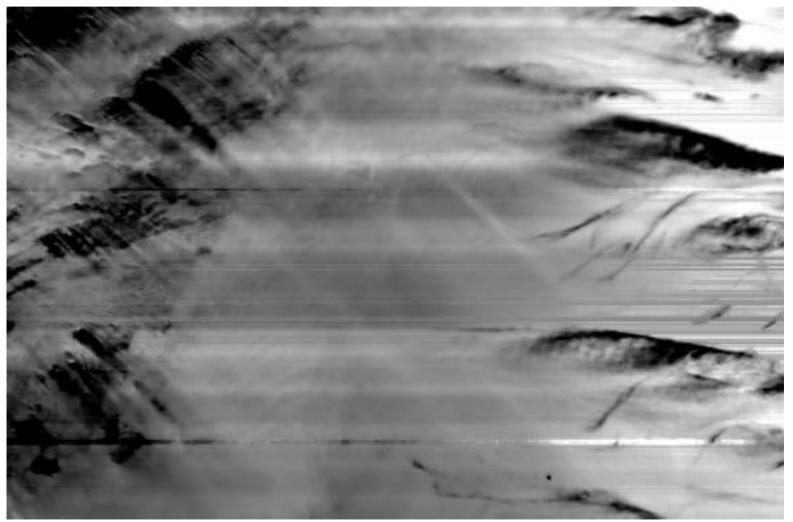
Data Flow



LAC on Spacecraft

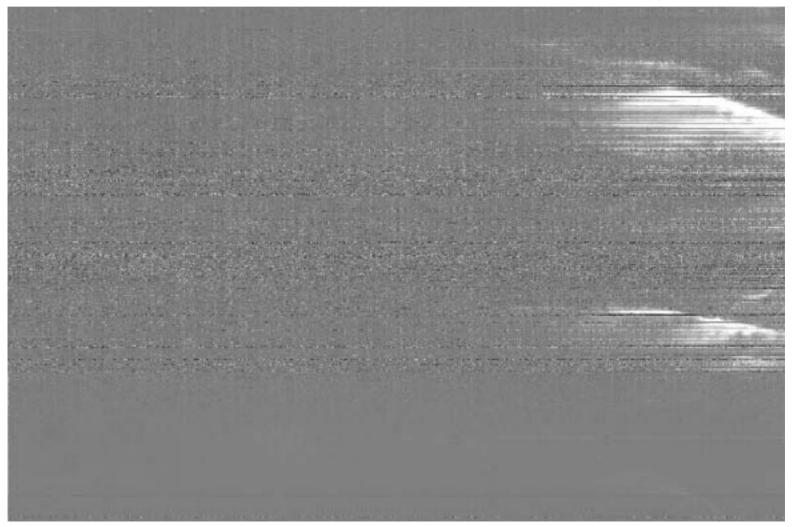
- Atmospheric Corrector on EO-1
- Three lenses are nadir facing
- SolarCalibratorsare facingforward
- Alignment cube on right

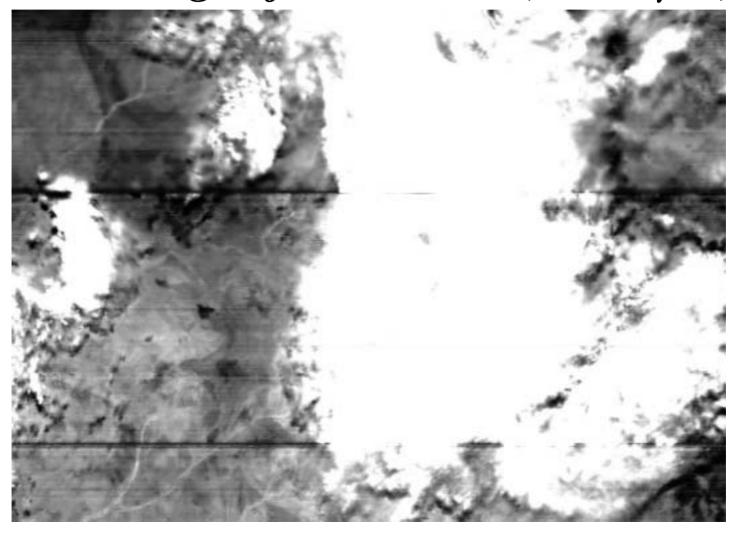
LAC Pre-Launch


LAC Comparative Size

LAC Technology Transfer

- Compact design adaptable to many moderate Spatial Resolution Hyperspectral applications
- Optics Module adaptable to redesign for differing spatial resolutions
- Electronics Module adaptable to redesign for differing spacecraft interfaces
- Spectral coverage/spectral resolution selectable by choice of Wedged Filter
 - 0.5 to 1.7 μm InGaAs Arrays Available
- GSFC owns this design and is willing to infuse it into any U.S. commercial or academic institution


LAC Image of Niger3 (1.243 µm)


Landsat Image of Niger3

LAC Image of Niger3 (1.383 µm)

LAC Image of Panorama (1.243 µm)

Landsat Image of Panorama

Section 8 Science Validation Process

Science Validation Team

Instrument Team

- Validate/re-establish and refine pre-launch characterizations
- Provide technology validation
- Participate on Science Validation Team

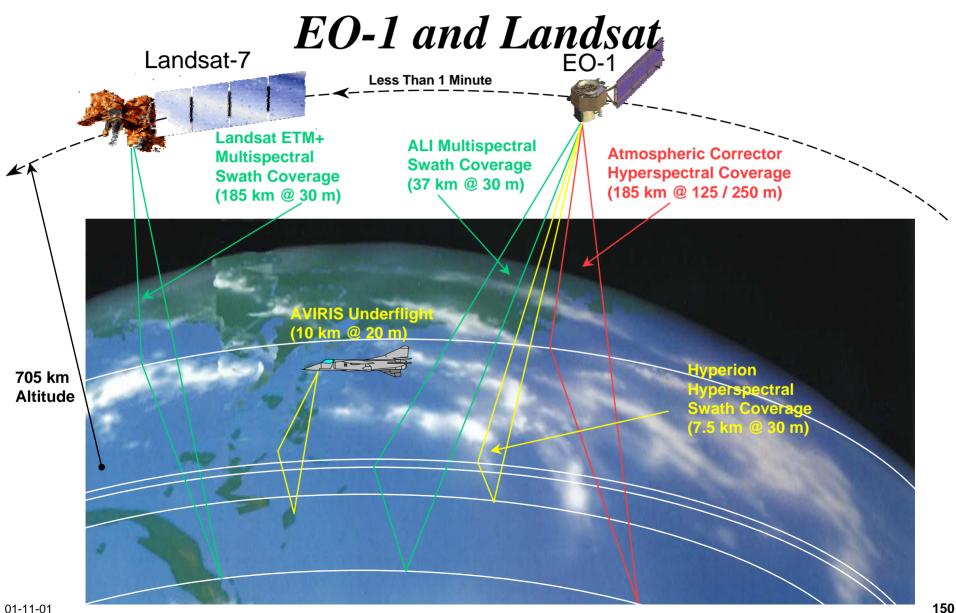
NASA Selected Investigators

- Conduct scene based instrument performance characterizations
- Measure ability of instruments to make Landsat-like observations
- Assess capability for addressing earth remote sensing applications
- Assist in technology validation
- Facilitate Commercial Applications (CRSP/SSC)

International Collaborators

Argentina, Australia, Canada, Italy, Japan, Singapore

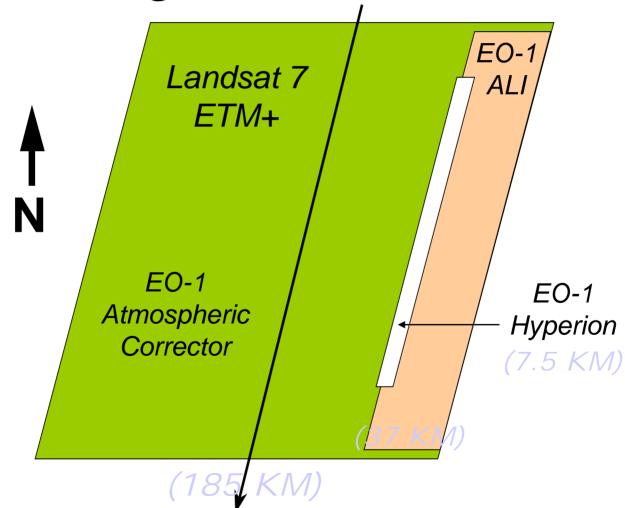
If scientists supply accurate and reliable information, policy makers can make intelligent and responsible decisions to preserve an acceptable quality of life for our children and grandchildren.


Characterization & Validation

- <u>Characterization</u> quantitatively describes how the three EO-1 instruments respond to incident radiation (light) under a variety of operating conditions.
- <u>Validation</u> assesses the EO-1 instrument measurements by comparing them against ground "truth". We also assess performance.

What's So Exciting About Calibration?

- Calibration is the stuff you do to insure accurate and repeatable measurements with the EO-1 instruments Ho hum!
- Calibration can be used to provide a common basis for intercomparing global measurements across a variety of earth satellite observing systems with profound ramifications!



151

EO-1 and Landsat 7 Descending Orbit Ground Tracks

EO-1 Instrument Overviews

	Landsat 7	EO-1	EO-1		
Parameters	ETM+	ALI Multispectral	HYPERION	AC	
Spectral Range	0.4 - 2.4 µm '	0.4 - 2.4 μm	0.4 - 2.5 µm	0.9 - 1.6 µm	
Spatial Resolution	30 m	30 m	30 m	250 m	
Swath Width	185 Km	37 Km	7.5 Km	185 Km	
Spectral Resolution	Variable	Variable	10 nm	3 - 9 nm **	
Spectral Coverage	Discrete	Discrete	Continuous	Continuous	
Pan Band Resolution	15 m	10 m	N/A	N/A	
Total Number of Bands	7	10	220	256	

^{*} Excludes thermal channel

^{** 35} cm⁻¹ constant resolution

EO-1 Instrument Overviews

	Landsat 7	EO-1	EO-1		
Parameters	ETM+	Multispectra l	HYPERION	AC	
Spectral Range	0.4 - 2.4 µm *	0.4 - 2.4 µm	0.4 - 2.5 μm	0.9 - 1.6 µm	
Spatial Resolution	30 m	30 m	30 m	250 m	
Swath Width	185 Km	37 Km	7.5 Km	185 Km	
Spectral Resolution	Variable	Variable	10 nm	3 - 9 nm **	
Spectral Coverage	Discrete	Discrete	Continuous	Continuous	
Pan Band Resolution	15 m	10 m	N/A	N/A	
Total Number of Bands	7	10	220	256	

^{*} Excludes thermal channel

Hyperspectral Analysis derives from the use of contiguous spectral channels, allowing the use of derivatives and sophisticated analysis techniques. The large number of bands allows more complex systems to be addressed without the under sampling inherent in multispectral systems.

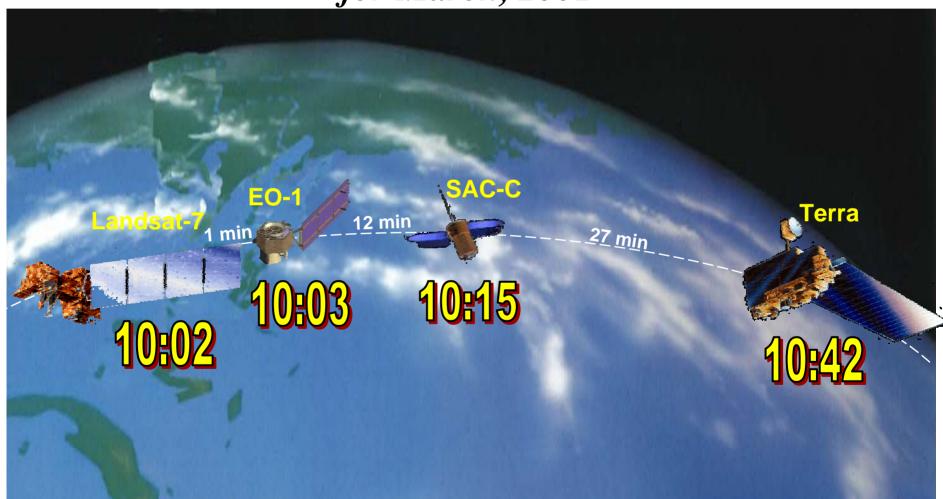
^{** 35} cm⁻¹ constant resolution

Investigator Research Topics

Research Topic	Principal Investigator
Forest Logging in Amazonia	Asner, G. P., University of Colorado
Desertification	Asner, G. P., University of Colorado
Forest Composition & Function	Martin, M., University of New Hampshire
Inter-Sensor Calibration	Huete, A. R., University of Arizona, Tucson
Arid Vegetation Abundance	Mustard, J. F., Brown University.
Tropical Forest Burn Scars	Liew, S. C., National University of Singapore
Forest Composition/Structure	Townsend, P. A., University of Maryland
Land Cover/Land Use	White, W. A., University of Texas at Austin
Sustainable Forest Development	Goodenough, D. G., Natural Resources Canada
Monitoring Forest & Rangeland	Gong, P., University of California, Berkeley
Non-Native Plant Species	McGwire, K. Desert Research Institute

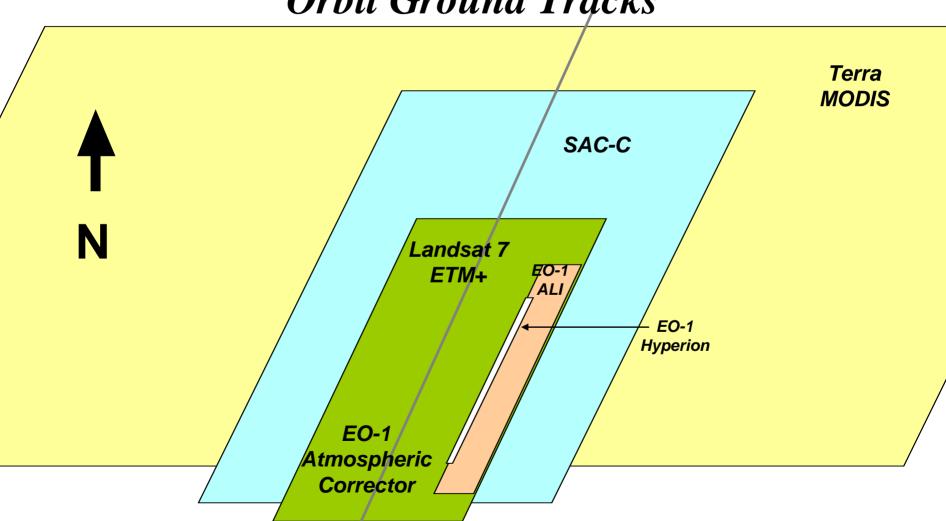
Investigator Research Topics (continued)

Research Topic	Principal Investigator
Invasive Plants: Chinese Tallow	Ramsey III, E. W., USGS, Denver
Invasive Leafy Spurge	Root, R., USGS
Agricultural Monitoring	Liang, S., USDA, Maryland
Inter-Satellite Comparison	Moran, M. S. USDA, Tucson, Arizona.
Fire Hazard Assessment	Roberts, D. A., University of California, Santa Barbara
Geologic Validation of Hyperion	Kruse, F. A., AIG, Boulder, Colorado
Volcanic Debris flow Hazards	Crowley, J. K., USGS, Reno, Nevada
Analysis of Hot Spots	Flynn, L., University of Hawaii.
Environmental Monitoring of Coastal/Inland Water in Japan	Matsunaga, T., Tokyo Institute of Technology.
Oceanography, Pollution and Urban Mapping	Abrams, M. J., JPL, California; R. Bianchi and L. Alberotanza, NRC, Italy.
Glaciological Applications	Bindschadler, R., NASA/GSFC, Maryland

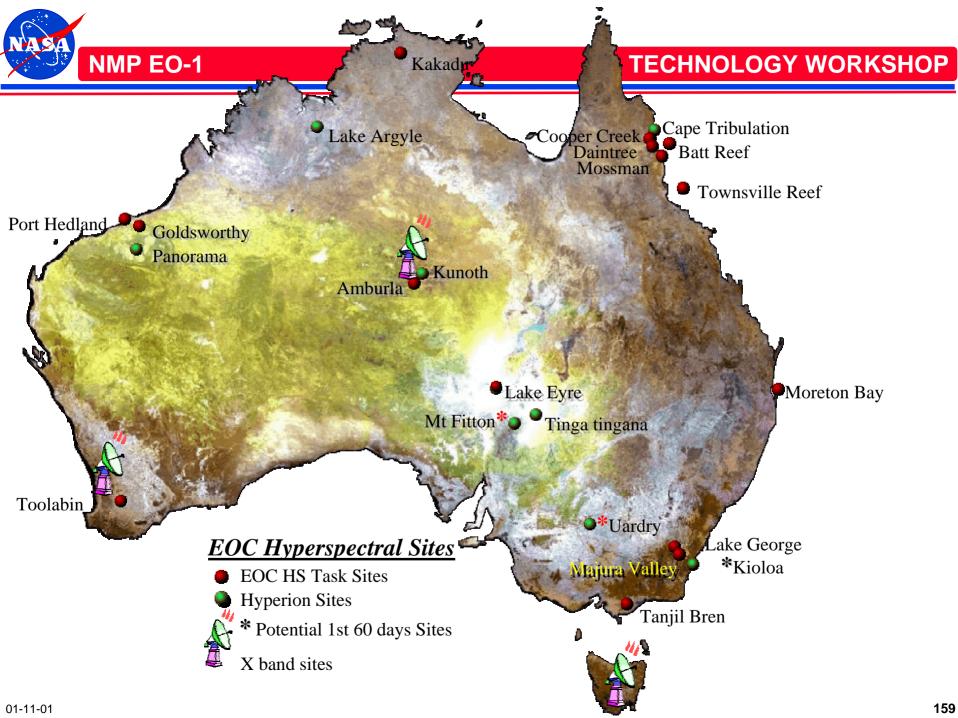


Investigator Research Topics (continued)

Research Topic	Principal Investigator
Ecological Applications in Yellowstone National Park	Boardman, J. W., AIG, Colorado
Commercial Applications	Cassady, P. E., Boeing, Washington
Radiometric and Spatial Evaluation of ALI and Hyperion	Biggar, S. F., University of Arizona
Atmospheric Correction	Carlson, B. E., NASA /GISS, New York
Atmospheric Correction and Sparse Vegetation Mapping	Goetz, A. F. H., University of Colorado
Australian Hyperspectral Calibration and Validation Sites	Jupp, D. L. B., CSRIO, Australia
Integrated Assessment of EO-1 and Landsat Instrument Suites	Meyer, D. J., EDC, South Dakota
Canopy Temperature Estimation	Smith, J. A., NASA GSFC, Maryland
Lunar Calibration	Kieffer, H., USGS, Flagstaff, AZ


NASA

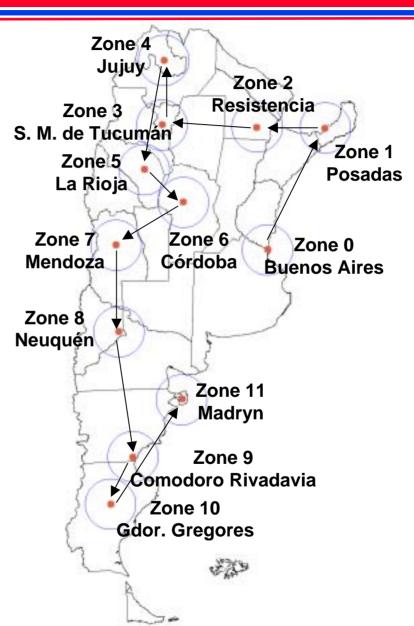
The EOS AM Constellation Alignment for March, 2001



AM Constellation Descending Orbit Ground Tracks

01-11-01

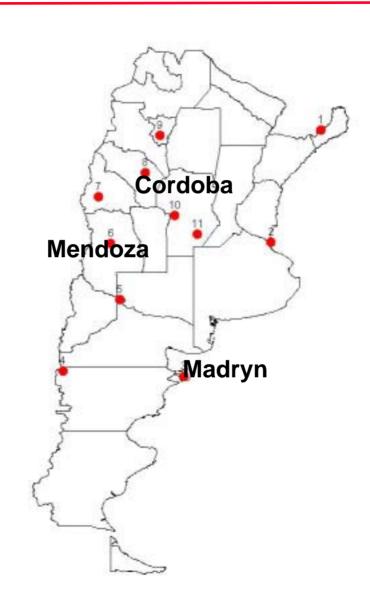
158



NASA NM

Argentina Validation Site Zone Map

for AVIRIS and EO-1/SAC-C overflights

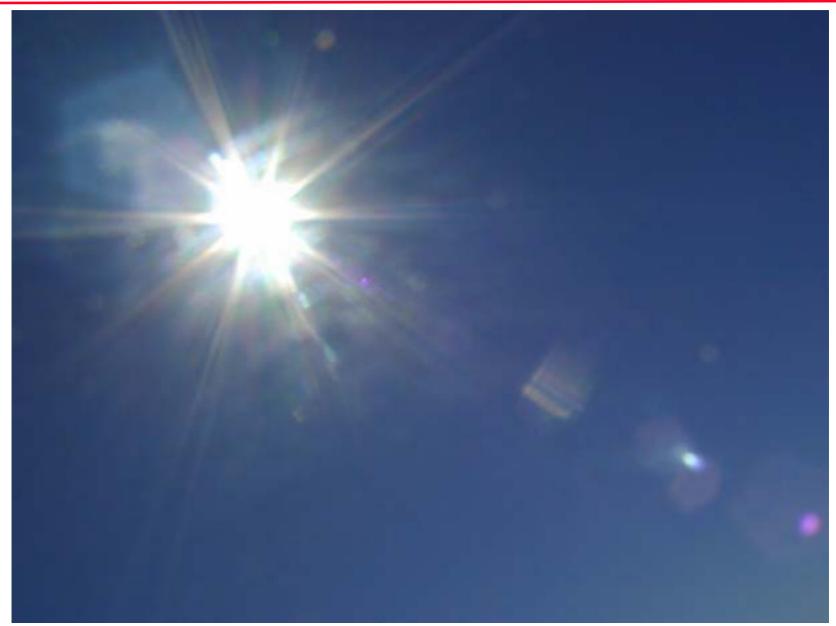

NMP EO-1

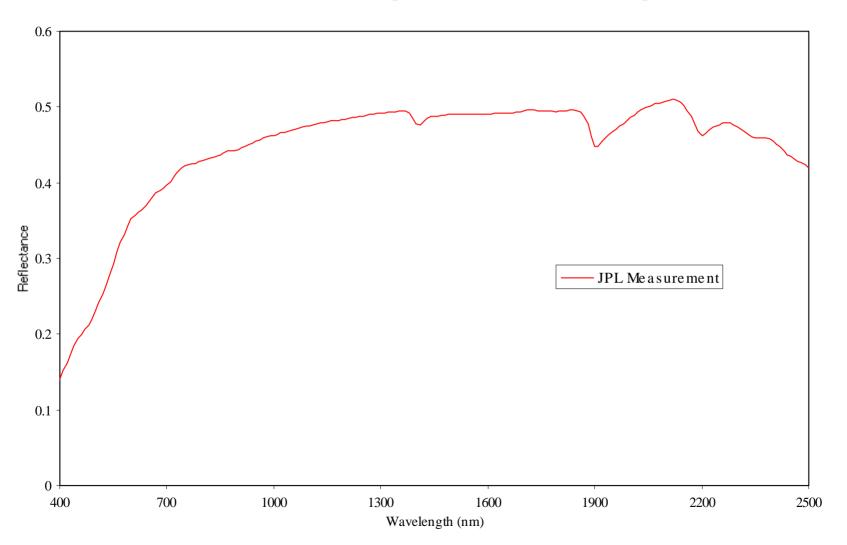
TECHNOLOGY WORKSHOP

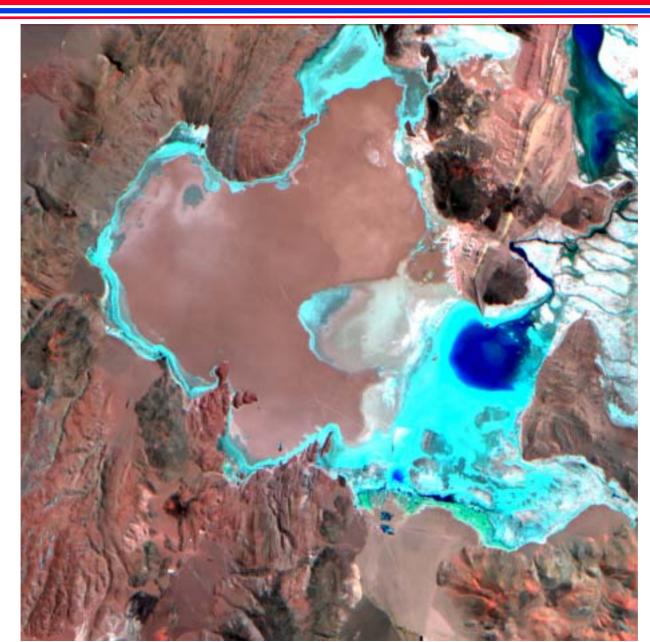
Zono	# Flight Line Name	Start Lat	min	Start Lon	min	End Lat	min	End Lon	Imin	Hours
Zone 0) Buenos Aires	1 pergamino-v	-33				-34	3.000			2.5
U) Buerios Aires	2 Pergamino-h	-33	58.020			-34	58.020			0.5
	3 Capital Federal-1	-33				-33	40.500			0.5
		-34	41.330	-56		-34				
	4 Capital Federal-2 5 Delta					-34	33.000 13.020			0.5
		-34		-58						0.5
	6 Magdalena TRANSIT	-34	58.980	-57	35.760	-35	7.020	-57	24.360	0.5 4.0
4) December	1 Libertad	25	55.320	5 4	37.560	25	56.230	5 4	40,400	
1) Posadas	2 Eldorado 1	-25		-54		-25				0.5
		-26	19.610	-54		-26	34.770			0.5
	3 Eldorado 2	-26	20.730	-54		-26	35.810			0.5
	4 Oberá 1	-27	17.280			-27	25.810			0.5
	5 Oberá 2	-27	17.250	-55		-27	32.650			0.5
	6 Iberá	-28	3.000	-56	49.980	-28	5.520	-57	0.480	1.0
	TRANSIT	_								4.0
2) Resistencia	1 Campo del Cielo 1	-27	31.020	-61		-27	45.000			0.5
	2 Campo del Cielo 2	-27	2.280	-61		-27	29.646			0.5
	3 Campo del Cielo 3	-27	30.636	-61		-27	23.286			0.5
	4 Santiago del Estero 1	-27	24.264	-61		-27	31.530			0.5
	5 Santiago del Estero 2	-27	32.682	-61		-27	25.284			0.5
	6 Chaco	-27	26.310	-61	16.314	-27	33.684	-61	37.482	0.5
	TRANSIT									6.0
3) Tucumán	1 San Miguel	-27	0.000	-65	34.980	-27	10.020			4.5
	2 Monteros	-27	0.000	-65	6.000	-26	28.020	-65	18.000	0.5
	3 Farallon Negro 1	-27	21.660	-66		-27	15.520			0.5
	4 Farallon Negro 2	-27	19.620	-66	25.920	-27	25.430	-66	17.500	0.5
	5 Farallon Negro 3	-27	20.880	-66	29.920	-27	19.620	-66	25.920	0.5
	TRANSIT									4.0
4) Jujuy	1 Arizaro 1	-24	50.000	-67	42.000	-25	10.000	-67	42.000	2.5
	2 Arizaro 2	-24	58.000	-67	30.000	-24	58.000	-67	50.000	1.0
	3 Arizaro 3	-25	0.000	-67	48.000	-25	10.000	-67	38.000	1.0
	4 Arizaro 4	-24	54.000	-67	5.000	-24	54.000	-67	35.000	1.0
	5 Arizaro 5	-24	50.000	-67	42.000	-25	10.000	-67	42.000	2.5
	6 Calilegua	-23	31.200	-64	45.000	-23	33.600	-64	39.600	0.5
	TRANSIT									4.0
5) La Rioja	1 La Antigua	-29	49.980	-66	4.980	-30	4.980	-66	4.020	0.5
•	2 Ciudad	-29	19.980	-66	49.980	-29	40.020	-66	34.980	1.0
	3 Talampaya 1	-29	42.100	-68	18.600	-29	58.200	-68	9.000	0.5
	4 Talampaya 2	-29		-68		-30	2.400			0.5
	TRANSIT		221.50		230			Ū.	2	2.0
6) Córdoba	1 Chancaní 1	-31	22.000	-65	22.000	-31	22.000	-65	32.000	0.5
-,	2 Chancaní 2	-31	23.355	-65		-31	23.355			0.5
	3 Chancaní 3	-31	24.708	-65		-31	24.708			0.5
	4 Chancaní 4	-31	26.061	-65		-31	26.061	-65		0.5
	5 Manfredi	-31	31.260	-64		-31	50.640			0.5
	6 Las Perdices	-32	50.340	-64		-32	37.020			0.5
	7 Rio Cuarto Craters	-32		-64		-33	8.000			0.5
	/ Nio Cuarto Craters	-32	5∠.000	-64	14.000	-33	0.000	-04	∠1.000	0.5

NASA

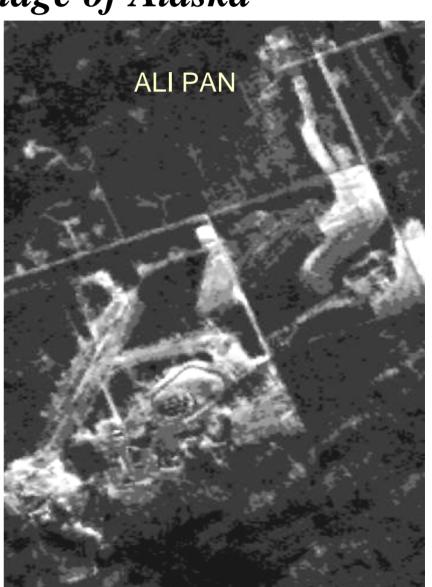
Argentine Test Sites







NM EO-1 Calibration Target at Barreal Blanco, Argentina



NA SA NI

"First Light" Image of Alaska

Why Is the ALI Pan Band Better Than the ETM+ Pan Band?

- Improved Radiometric resolution
 - Superior signal-to-noise
 - 12-bit versus 8-bit representation of dynamic range
- Inherently higher contrast measurement
 - ALI pan restricted to 480 490nm VIS spectral interval
 - ETM+ spans vegetation transition rise (520 900nm)
- Smaller pixel size (IFOV)
 - ALI pan IFOV is 10 meters
 - ETM+ is nominally 15 meters (effectively 18 meters)

NMP EO-1

Hyperion Image - Argentina

Hyperspectral DCE Acquired Dec 1, 2000

Color image produced using 3 bands in visible

Blue = band 14 (488 nm)

Green = band 20 (549 nm)

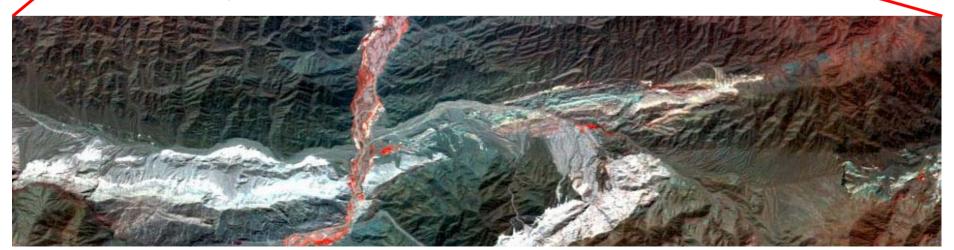
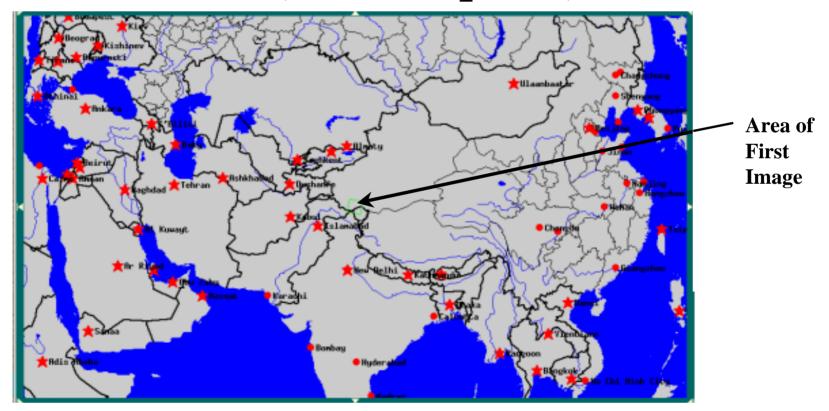

Red = band 38 (731 nm) (red shows areas of new spring growth)

Image No. EO12000336_002002C_r1_image0su


Approx. 7.5 km wide x 65 km long

NORTH

NA SA N

Area of First Hyperion Image Collection (Green Square)

Section 9

Spacecraft Technologies

- Wideband Advanced Recorder / Processor (WARP)
- X-Band Phased Array Antenna
- Enhanced Formation Flying
- Carbon-Carbon Radiator
- Pulse Plasma Thruster
- Lightweight Flexible Solar Array

Wideband Advanced Recorder Processor (WARP)

Technology Enabler

Description:

High Rate (up to 840Mbps capability), high density (48Gbit storage), low weight (less than 25.0 Kg) Solid State Recorder/Processor with X-band modulation capability.

Utilizes advanced integrated integrated circuit packaging (3D stacked memory devices) and "chip on board" bonding techniques to obtain extremely high density memory storage per board (24Gbits/memory card)

Includes high capacity Mongoose 5 processor which can perform on-orbit data collection, compression and processing of land image scenes.

Validation:

The WARP is required to store and transmit back science image files for the AC, ALI and Hyperion.

Partners:

Litton Amecom

Benefits to Future Missions:

The WARP will validate a number of high density electronic board advanced packaging techniques and will provide the highest rate solid state recorder NASA has ever flown.

Its basic architecture and underlying technologies will be required for future earth imaging missions which need to collect, store and process high rate land imaging data.

Top-Level Specifications

Data Storage: 48 Gbits

Data Record Rate: > 1 Gbps Burst

900 Mbps Continuous (6 times faster than L7 SSR)

Data Playback Rate: 105 Mbps X-Band (with built-in RF modulator)

2 Mbps S-Band

Data Processing: Post-Record Data Processing Capability

Size: 25 x 39 x 37 cm

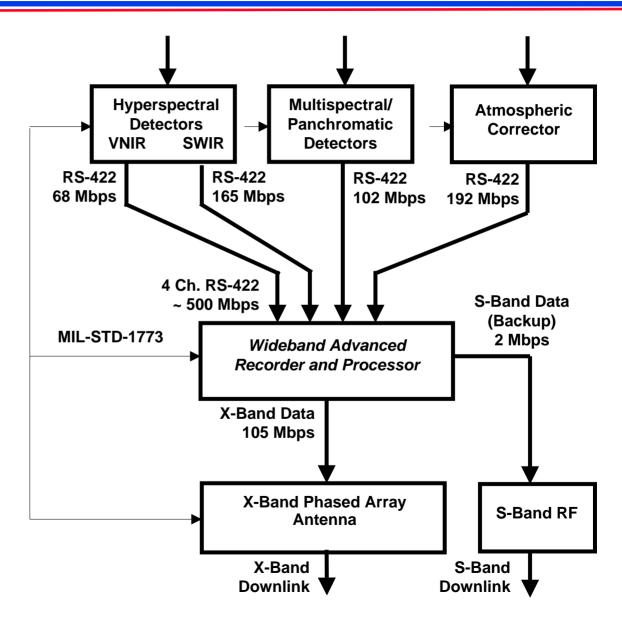
Mass: 22 kg

Power: 38 W Orbital Average., 87 W Peak

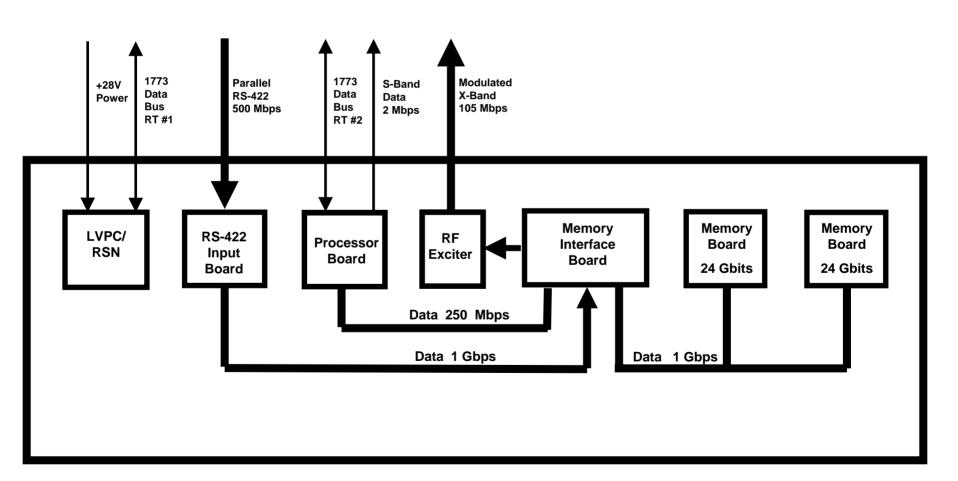
Thermal: 15 - 40 °C Minimum Operating Range

Mission Life: 1 Year Minimum, 1999 Launch

Radiation: 15 krad Minimum Total Dose, LET 35 MeV



WARP on Spacecraft, Bay 1



EO-1 Flight Data System Architecture

WARP Flight Hardware Architecture

WARP Infusion Opportunities

- NASA owns the WARP design
- WARP was built in association with Litton Amecom
- WARP is particularly applicable to missions with the following:
 - High ingest data rates ≤ 1.0 Gigabit / second
 - Need for processing capability on board
 - Use of phased array antenna as primary downlink
- WARP was single-string for EO-1 but reliability enhancements have already been designed
- Technical support to facilitate infusion is negotiable
- For further information, contact:

Terry Smith
<u>Terrence.M.Smith.1@gsfc.nasa.gov</u>
301-286-0651

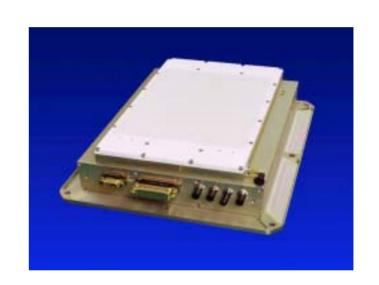
X-Band Phased Array Antenna (XPAA)

Technology Need:

High rate, reliable RF communication subsystems

Description:

The X-band phased array antenna is composed of a flat grid of many radiating elements whose transmitted signals combine spatially to produce desired antenna directivity (gain)


- Avoids problems of deployable structures and moving parts
- Lightweight, compact, supports high downlink (100's Mbps) rates.
- Allows simultaneous instrument collection and data downlink.

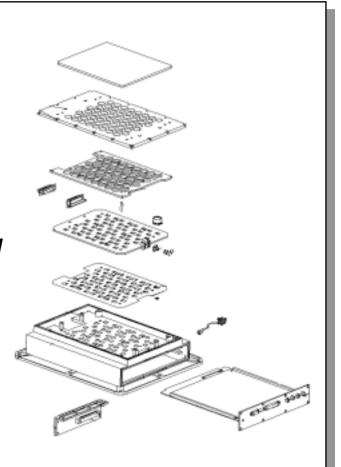
Validation:

The XPAA will be validated through measurement of bit error rate performance and effective ground station EIRP during science data downlinks over the lifetime of the mission.

Commercial Partners:

Boeing Phantom Works

Benefits to Future Missions:

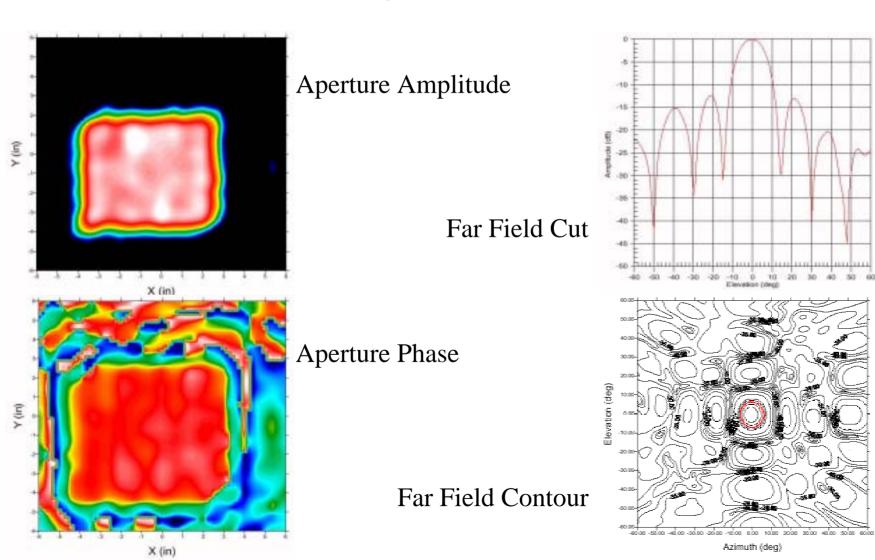

Future Earth Science missions will produce tera-bit daily data streams. The Phase Array antenna technology will enable:

- Lower cost, weight and higher performance science downlinks
- Lower cost and size ground stations
- More flexible operations

NASA


XPAA Performance Summary

- Frequency 8225 MHz
- Bandwidth 400 MHz
- Scan Coverage 60 deg half-angle cone
- Radiating Elements 64
- RF Input 14 dBm
- EIRP greater than 22 dBW at all commanded angles
- Polarization LHCP
- Command Interface / Controller 1773 / RSN
- Input DC Power <58 watts over 0 to 40 C
- Mass 5.5 kg



XPAA mounted on *E01*, undergoing near-field scanning in the large clean room at GSFC.

NASA

Near Field Measurement Data for the XPAA when Mounted on EO1

XPAA Initial Validation Summary

- Early post-launch experience with the XPAA revealed intermittent data errors while NASA ground antennas were autotracking the X-band signal. Currently, using S-band tracking and some additional passes, all science validation data is being successfully transmitted to ground using the XPAA.
- A Tiger Team was established in December 2000 to find the cause:
 - Initial validation measurements and on-board telemetry indicate that the XPAA is operating well and as-designed
 - Alignment problems and other issues were found at the ground stations that are now being evaluated and rectified
 - This is the first X-band satellite with a Left-hand Circularly Polarized signal to be tracked by these stations
 - Several other commercial ground stations have had little or no difficulties in receiving the data.
 - All Tiger Team results will be included in the Technology Transfer Documentation

XPAA Technology Infusion Opportunities

- Design is owned by Boeing Phantom Works in Seattle, WA.
- Boeing is interested in the commercial sale of their phased array antennas similar to the EO-1 antenna
 - The phased array antenna is applicable to missions requiring:
 - Low mass antenna
 - High reliability with graceful degradation
 - Agile, accurate antenna pointing with no physical disturbance to the spacecraft
- NASA support to facilitate infusion is negotiable
- For further information contact:

Kenneth Perko

Kenneth.L.Perko.1@gsfc.nasa.gov

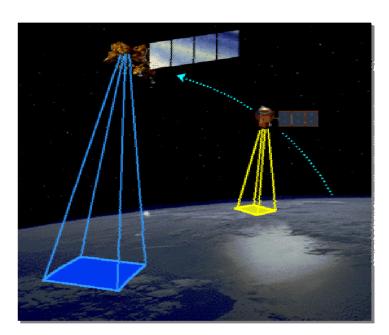
301-286-6375

Enhanced Formation Flying (EFF)

Technology Need:

Constellation Flying

Description:


The enhanced formation flying (EFF) technology features flight software that is capable of autonomously planning, executing, and calibrating routine spacecraft maneuvers to maintain satellites in their respective constellations and formations.

Validation:

Validation of EFF will include demonstrating onboard autonomous capability to fly over Landsat 7 ground track within a +/- 3km while maintaining a one minute separation while an image is collected.

Partners:

JPL,GSFC, Hammers

Benefits to Future Missions:

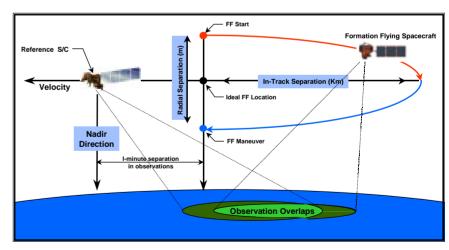
The EFF technology enables small, inexpensive spacecraft to fly in formation and gather concurrent science data in a "virtual platform."

This "virtual platform" concept lowers total mission risk, increases science data collection and adds considerable flexibility to future Earth and space science missions.

NASA

Performance Required

Mission Orbit Requirements

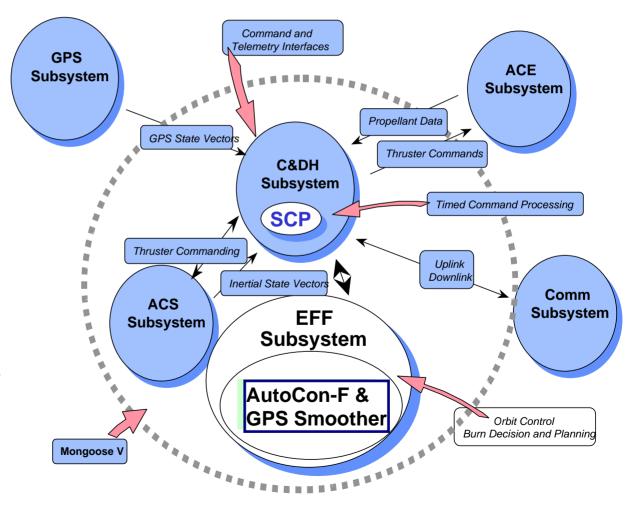

- Paired scene comparison requires EO-1 to fly in formation with Landsat-7.
- Maintain EO-1 orbit with tolerances of:
 - One minute separation between spacecraft
 - Maintain separation so that EO-1 follows current Landsat-7 ground track to +/- 3 km

Derived Orbit Requirements

- Approximately six seconds along-track separation tolerance (maps to +/- 3km with respect to earth rotation)
- Plan maneuver in 12 hours

Derived Software Constraints

- Code Size approximately ≈655Kbytes
- CPU Utilization approximately <50%
 Average over 10 Hours during maneuver planning
- Less than 12 hours per maneuver plan



EO-1 Formation Maneuver Frequency Is Ballistic Dependent

Subsystem Level

Verify

- **EFF**
- AutoCon-F
 - GSFC
 - JPL
 - GPS Data Smoother
- SCP
- Algorithm Flight Code Uploads for JPL into RAM

Enhanced Formation Flying

Technology Infusion Opportunities

- Enhanced Formation Flying technology is owned by NASA
- It is applicable to missions that require:
 - Constellations
 - "Virtual" platforms that involve the coordinated use of instruments on different spacecraft
 - Autonomous operations
- NASA support to facilitate infusion is negotiable
- For further information contact:

Dave Folta

David.C.Folta.1@gsfc.nasa.gov

301-286-6082

Carbon-Carbon Radiator

Technology Need:

Increase instrument payload mass fraction.

Description:

Carbon-Carbon is a special composite material that uses pure carbon for both the fiber and matrix. The NMP Earth Orbiter – 1 mission will be the first use of this material in a primary structure, serving as both an advanced thermal radiator and a load bearing structure Advantages of Carbon-Carbon include:

- High thermal conductivity including through thickness
- Good strength and weight characteristics

Validation:

EO-1 will validate the Carbon-Carbon Radiator by replacing one of six aluminum 22" x27" panels with one constructed using the C-C composite materials. Mechanical and thermal properties of the panels will be measured and trended during environmental testing and on-orbit.

Benefits to Future Missions:

This technology offers significant weight reductions over conventional aluminum structures allowing increased science payload mass fractions for Earth Science Missions. Higher thermal conductivity of C-C allows for more space efficient radiator designs.

Partners

CSRP (consortium)

Design Overview

- Equipment panel (Bay #4) composed of carbon-carbon facesheets and an aluminum honeycomb core
- Supports the LEISA and PSE
- Measures 28.62 x 28.25 x 1.00 in
- Mass of 3.12 kg
- Flight unit and spare
- Design stable since CDR

Performance Required

- Mass Less than 2.5 kg
- Stiffness First mode frequency greater than 100 Hz when hard-mounted to the S/C
- Strength Inertial loading
 - Simultaneous quasi-static limit and S/C interface loads
 - 15 g acceleration in any direction
 - Shear load of 16,100 N/m
 - Edge normal load of 19,500 N/m
 - Panel normal load of 1,850 N/m
 - Maximum fastener forces at the S/C attachment points
 - Maximum tension force of 25 N
 - Maximum shear force normal to panel edge of 135 N
 - Maximum shear force parallel to panel edge of 115 N
- Strength Thermal loading
 - On-orbit temperature variations ranging from -20°C
 to +60°C

Carbon-Carbon Radiator

Technology Infusion Opportunity

- Design is owned by Carbon-Carbon Spacecraft Radiator Partnership (CSRP)
- This technology is applicable to missions requiring:
 - Lightweight, efficient radiators with favorable structural properties
 - Structural properties and thermal properties can be balanced in the manufacturing process
- The CSRP is interested in providing these radiators to interested parties
- NASA support to facilitate infusion is negotiable
- For more information contact:

Dan Butler

Charles.D.Butler.1@gsfc.nasa.gov

301-286-3478

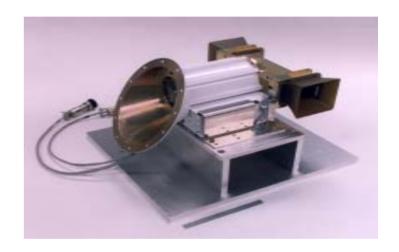
Pulse Plasma Thruster (PPT)

Technology Need:

Increased payload mass fraction and precision attitude control

Description:

The Pulse Plasma Thruster is a small, self contained electromagnetic propulsion system which uses solid Teflon propellant to deliver high specific impulses (900-1200sec), very low impulse bits (10-1000uN-s) at low power.


Advantages of this approach include:

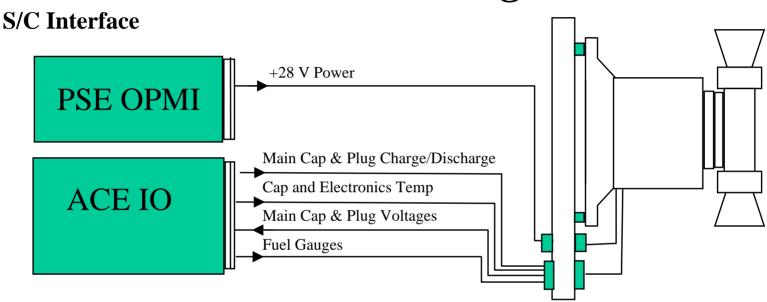
- Ideal candidate for a low mass precision attitude control device.
- Replacement of reaction control wheels and other momentum unloading devices. Increase in science payload mass fraction.
- Avoids safety and sloshing concerns for conventional liquid propellants

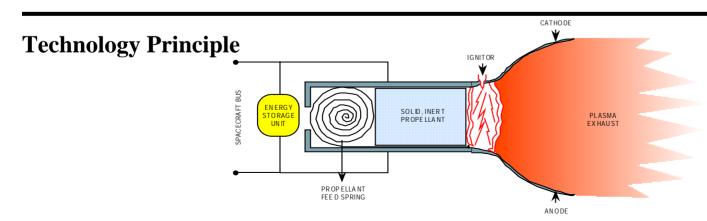
Validation:

The PPT will be substituted (in place of a reaction wheel) during the later phase of the mission (month 11). Validation will include:

- Demonstration of the PPT to provide precision pointing accuracy, response and stability.
- Confirmation of benign plume and EMI effects

Benefits to Future Missions:


The PPT offers new lower mass and cost options for fine precision attitude control for new space or earth science missions


Partners

GRC, Primex, GSFC

PPT Design

Pulse Plasma Thruster

Technology Infusion Opportunity

- Design is owned by Primex
- Validation scheduled for October / November 2001
- EO-1 unit developed at the Glenn Research Center
- Applicable to missions requiring:
 - Low mass, precision attitude control
 - Highly reliable
- Primex will provide similar units to interested parties
- NASA support to facilitate infusion is negotiable
- For more information contact:

Charles Zakrzwski

Charles.M.Zakrzwski.1@gsfc.nasa.gov

301-286-3392

NASA

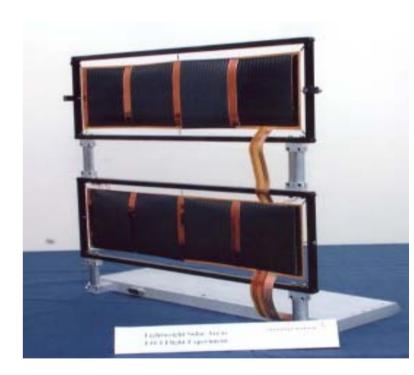
Lightweight Flexible Solar Array (LFSA)

Technology Need:

Increase payload mass fraction.

Description:

The LFSA is a lightweight photovoltaic(PV) solar array which uses thin film CuInSe2 solar cells and shaped memory hinges for deployment. Chief advantages of this technology are:


- Greater than 100Watt/kg specific energies compared to conventional Si/GaAs array which average 20-40 Watts/kg.
- Simple shockless deployment mechanism eliminates the need for more complex mechanical solar array deployment systems.
 Avoids harsh shock to delicate instruments.

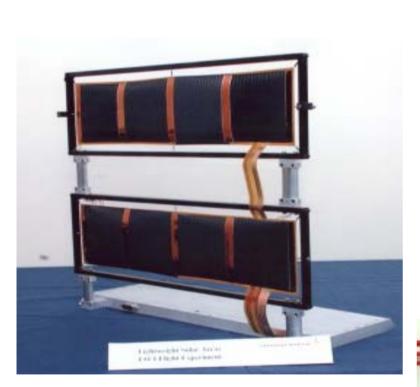
Validation:

The LFSA deployment mechanism and power output will measured on-orbit to determine its ability to withstand long term exposure to radiation, thermal environment and degradation due to exposure to Atomic Oxygen.

Partners

Phillips Lab, Lockheed Martin Corp

Benefits to Future Missions:


This technology provides much higher power to weight ratios (specific energy) which will enable future missions to increase science payload mass fraction.

Description

- Copper Indium Diselenide (CuInSe2 or CIS) Thin-Film Solar Cells
- Deposited on a Flexible Kapton Blanket suspended in a Composite Frame
- Frame Deployed Using Shape Memory NiTi Alloys and a Launch Restraint Device
- Advantage: Increase solar array w/kg (from typical 40 w/kg) to >100 w/kg), increase science payload mass fraction
- Partners: AFRL (Kirtland AFB, NM), NASA/LaRC, Lockheed Martin (Denver, CO)

Description (continued)

LFSA FLIGHT UNIT

SMA - STOWED

SMA - DEPLOYED

Lightweight Flexible Solar Array

Technology Infusion Opportunities

- Design is owned by Lockheed Martin
- Developed by Air Force Research Lab
- Applicable to missions requiring low mass solar array
- Shaped memory hinges provide simple, shockless deployment
- Lockheed Martin will provide similar systems to interested parties
- NASA support to facilitate infusion is negotiable
- For more information contact:

John Lyons <u>John.W.Lyons.1@gsfc.nasa.gov</u> 301-286-3841

Section 10

Next Steps and Near-Term Schedule

Operational Phases

- Launched on November 21, 2000
- Initial Operations:
 - First several orbits to complete essential spacecraft checkout
 - Approximately 15 days to fully complete technical checkout
 (22 days to get into formation one minute behind Landsat)
- Instrument Checkout
 - Full instrument checkout involving imagery to validate technical performance
 - Requires approximately 60 days
- Nominal Ops
 - Science validation starts after Instrument Checkout
 - Minimal Mission completed in about 120 days
 - All validations completed after 330 days
- Extended Mission:
 - Planning starts at 120 days
 - Decision at 180 days
 - Start at 330 days

Next Steps

- EO-1 web site: http://eo1.gsfc.nasa.gov
- Contains a section entitled "EO-1 Technology Transfer & Infusion":
 - **Background information**
 - **Presentations**
 - Mission status
 - Schedule of events
 - **Contact information**
 - Technology Transfer Documentation as available
- To discuss infusion opportunities use the contacts provided today
- To discuss your participation in an EO-1 Extended Mission, contact:
 - Granville Paules: 202-358-0706
 - Bryant Cramer: 301-286-0644